THE MULTIPLICITY OF A CLASS OF PERFECT SETS
PAUL CIVIN AND H. E. CHRESTENSON

1. Introduction. Let P denote the perfect set of measure zero
constructed in the following manner: From [0, 2r]=p} remove an
open interval d}, leaving intervals p} and p;. At the mth stage of the con-
struction remove dp* from p{*~' and call the remaining intervals
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N. K. Bari [1] established that if (i) €x=0(1) and (ii) 6.=0(1),
then P is a set of multiplicity for trigonometric series. She further
conjectured that the hypothesis (ii) was superfluous. Subsequently
S. Verblunsky [3] introduced a lemma upon which he based a proof
of the conjecture of Bari. The identical proof was recently repeated
in Bari's tract on The uniqueness problem of the representation of func-
tions by trigonometric series [2].

Unfortunately, Verblunsky’s lemma is not true. We present here a
counter example to the lemma and establish a theorem intermediate
to the Bari theorem and conjecture.

For the sake of brevity we assume that the notation and construc-
tion used by Bari and Verblunsky are known [2, pp. 29-33; 3, pp.
290-294].

2. Verblunsky’s lemma states that if pj,;_,ER}, and is to the left
of d}, and if p},_; <2r(A\—1)A\™, 1 <\ <2, then p}, can be represented
as the sum of

(a) a segment piER;, of length = 27x\—™, plus

(b) a sum of pairs of adjacent p}, d;, such that

and

t t 8 t
Z (Pv + dy) < ()‘ - I)Puy P € R:n
Suppose p3,_, satisfies the hypotheses of the lemma and suppose
. k
(l) P2j @ R:m
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. k+1 k+1
(ii) Pij = Paj-1

cee k+1 ’ k+1
(iii) pij € Rm, psi1 € R

It is clear that perfect sets exist for which these conditions are
satisfied for arbitrarily large m. These conditions require that d} be
located close to the left end of pf~' and that pj, be divided sym-
metrically by an appropriate dz; .

The conclusion of the lemma now is

k k+1 k+1 k+1
p2; = pa; + (paj—1 + d2j )
where
k+1 k+1 k+1 k+1
paj—1 + dsj < (N — Dpy; < puj
since A < 2. This contradicts (ii).

The proof [2, p. 39; 3, p. 300] of the lemma fails where it is stated
that pj,_, cannot belong to both R,_, and R}, This is possible, the
only requirement being that ¢} =p}= 2w\,

3. THEOREM. Let the perfect set P be constructed as described in §1.
If en=0(1) and 0, =0(1/1m) Where Nm=supazm (€s), then P is a set of
multiplicity for trigonomelric series.

Proor. Let

1 vm = sup (9.0,), S0 v, — 0 monotonically.
n=m

For xEP let in(x) =im be determined by xEpi. ). Then {prm)
is a unique sequence, strictly decreasing to zero. For x € P and a fixed
n choose the unique k=k(x, n) such that
2) ! Sn< !

S D S —

6 2pa e 205 o
The set {pf} covers P. This is a finite covering since every
prf:.: determines the same p;,. By eliminating the superfluous ele-
ments we obtain a unique minimal cover V,, consisting of nonover-
lapping intervals.

Let {. denote the minimum % such that p;, € V.. Then {,— as
n—ro,

Define

Fi(z) if x€pi € Va
H,(x) =
@=Vw ¥ zav.
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Fk.,.l(x) if =« e P;’: G Vm
(%) if =€V,

It is a standard result of the theory of uniqueness that the multi-
plicity will be established when we prove that

Ga(x) =

3) I.=1n 2'F(at:)c""""d:’:: = o(1).

0

Let Ty, T, and T be defined by the relation

I, = ”fh [F(2) — Ga(x)]eirdx

o 27
@ o [ 6ua) - Hu(@)led
0

2r

+n H,.(x)e“"’dx =T+ Ts+ Ts.
0

Let Y. u) denote the sum over all pairs (k, ) such that pf,EV,.
Since F(x) = Fa1(x) =Ga(x) on dit?,

il s [ |P=Glas =X [,|F-Gla
Va Pix
=n2(k)[f.“|F F,,+1|dx+f |F Fk.nldx]
Pt

In the construction of F(x) it is shown [2, p. 32; 3, p. 293] that
| F(x) = Fu(x)| S41a|AT| on pf, so

| T1| £ X andmenl| Az.,_1 pz;,_l |A:}L,, pz.,]
From (2),

1 1
n < =< .
)2l T ()20
Thus
4 k+1 . E+1
k+1 k+1 qu—-l E+1 243
I Tll < E(k) )1/3 [ l Aﬁg—l k+l + I A!sk z_H]

4’Ib+10t+1
= Z(k) —_—

T [] Asipa |+ Wbl

Using (1),
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) | Ti| < 405) " Tl | Asyer | + | Az | 1 = 802" = o(1).

By a partial integration, it follows that
2r
Ta=—1i f (Gn — HYe2dx = — i f , iy — Foeinedz.
0

Pg'k

Since Fy=Fi41 on o3},

| Te] éZ(k)[f":l IF;+1—F;Idx+fd=:llpl:+x—Fl:| dx]

(6) = D & 2[absolute variation of F; on d:: l]
k1
k4, E
=23 | Ayl — = 2ne, 2y | As | = o(1).
%

A partial integration in T shows that
2x
Ty=—1 f Hyeadx = — i) f JFreiradzx
0 Piy
k

A; .
= Z(k) "ka. e~intdx,
pi. P‘.
Finally, using (2),

k
2| A;
| T3] = X | ,,lI $2Xw|an oo™
”P‘.
)] = Z(VIu)I/zZ(k) l Afa' = o(1).

Equations (4) through (7) imply (3), and the proof is complete.
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