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1. Introduction. In this paper a study is made of the effect of the

structure of the set of zero divisors on the associativity and commuta-

tivity of an alternative ring. A ring satisfies the alternative law if the

associator (*, y, z) = (xy)z—x(yz) is an alternating function of its

arguments. In the case of a finite associative ring this problem has

been studied by Herstein [2]. The theory of the radical of an alterna-

tive ring has been given by Smiley [12 ] and his definition will be used

throughout.

By the center of an alternative ring A we mean the set C of all

elements c such that (c, A, A) = (c, .¡4)=0. Here (*, y)=xy—yx is

the commutator of * and y. If an alternative ring properly contains

its center and all of its zero divisors lie in the center it will be shown

that the set of zero divisors forms an ideal. Accordingly we first study

alternative Zorn rings [8] where the set of left zero divisors forms a

proper left ideal. Such a ring is a division ring modulo its radical and,

conversely, in a Zorn ring which is a division ring modulo its radical

the set of left zero divisors forms a left ideal. In §3 we assume that

all the zero divisors of an alternative ring lie in the center and then

give sufficient conditions for the ring to be commutative and associa-

tive. In particular this turns out to be the case for an algebraic alge-

bra over an algebraically closed or finite field. In the next section we

assume only that the nilpotent elements lie in the center but here

deal only with algebraic algebras. Under suitable hypotheses on the

base field it is again true that the algebra is associative and com-

mutative. In the last section we extend our results to real Banach

algebras replacing the concept of zero divisor by that of topological

zero divisor. In particular we show that a real Banach algebra with

all its topological zero divisors in the center is the quaternions or

commutative.

We wish to express our thanks to Professors I. Kaplansky and M.

Ward for several conversations with regard to this paper.

2. Characterization of completely primary Zorn rings. We shall call

a ring A a Zorn ring if it is alternative and if every element a is

either nilpotent or has a left multiple ba which is a nonzero idem-

Presented to the Society, April 25, 1952 ; received by the editors June 20, 1952.

1 This work was done while one of the authors (A. R.) was under contract with the

U. S. Air Force.

203



204 j. E. Mclaughlin and alex Rosenberg [April

potent.2 An element a oí A is called a left zero divisor if there exists a

d^O in A such that ad = 0. Then we have the following

Theorem 1. Let A be a Zorn ring in which the set L of left zero di-

visors forms a left ideal ¿¿A. Then L = R, the radical of A, and A—Risa

division ring.

Remark. It is known from some recent work of Brück and Klein-

feld that every alternative division ring is either associative or a

Cayley-Dickson algebra. We should also like to point out that

Theorem 1 generalizes a theorem of McCoy [9, Theorem 3].

Proof. Since A is Zorn, i? is a nil ideal and so RÇ.L. Now suppose

L is not nil, then by the Zorn assumption L contains a nonzero

idempotent e. Thus for all a in A, a = ae+(a — ae). The Theorem of

Artin states that any subring of A generated by two elements is

associative. Therefore (a — ae)e = 0, so a — ae as well as ae is in L.

This implies that A =L, a contradiction. Therefore L is nil and L = R.

By Lemma 18 of [8], A =A —R is also a Zorn ring. A contains no

left zero divisors except 0, for if ad = 0 in A then ad lies in R. But then

(ad)n = 0 for some minimal n. By the Theorem of Artin we can write

a[d(ad)n~1]=0, so either a or d is in R. Thus A is a Zorn ring with

no left or right zero divisors except 0, and therefore A is easily seen

to be a division ring.

We next prove a partial converse of Theorem 1.

Theorem 2. Let A be a Zorn ring with radical R and suppose that

A—R is a division ring. Then L, the set of left zero divisors in A, is

either R or all qf A.

Proof. Suppose there is an a not in R such that ad = 0, d^O. We

shall show that this implies L=A, and we begin by showing that all

idempotents are in L.

Since A — R is a division ring, a is not nilpotent. Thus there is a non-

zero idempotent e = a'a and we may assume ea' = a'. Using the Theo-

rem of Artin we see that f=aa' is again a nonzero idempotent. Now if

e is not in L, x = ex for all * in A ; in particular d = ed. Then we have

(a', a, d)=d, and by (2.20) of [l], ((a', a, d), a', a) = (e-f)d. Thus

d=(e—f)d. But e—f=r is in R so that rB = 0. A straightforward com-

putation shows that d = rmd for all integers m, and therefore d = 0, a

contradiction. Hence e is in L and there is a nonzero element g of A

such that eg = 0. Now let j be any idempotent. If/ does not lie in

L, *=/* for all * in A. Therefore g=jg=(j — e)g which again implies

g = 0. Thus all idempotents are in L.

1 For a discussion of Zorn rings see [7] and [8].
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Now let * be any nonradical element of A. Again there are nonzero

idempotents e = x'x and/=**', and we have x = xe+(x—xe). Since

x — xe lies in R, (x — xe)k = 0 for some minimal k. Suppose first k>l.

Since e and / are in the subring generated by * and *', the Theorem

of Artin allows us to associate any expression involving only these

four symbols. Thus we have *(* — xe)k~1 = xe(x—xe)k~l. If * is not in

L, this yields (x — xe)k~1 = e(x—xe)k~1. But f(x—xe) = 0, and this

gives (x — xe)k~1 = (e—f)(x—xe)k~1 which as before implies (x — xe)k~1

= 0. Hence if k>l, x is in L.

Now suppose k = 1 ; then * = xe. There is a nonzero d in A such that

ed = 0, and therefore (*, e, d)=xd. But by (2.13) of [l]

x(dx) = (xd)x = (x, e, d)x = (x, xe, d) = (*, x, d) = 0.

So * is in L unless dx = 0. But then 0 = (d, x, e) = (x, e, d)=xd, so

that in this case also * is in L. Thus every element of A is in L.

It should be noted that we do not assume the presence of a unit.

If, however, a unit is present the proof of Theorem 2 can be simplified

considerably.3 Furthermore if a Zorn ring A satisfies the hypothesis

of Theorem 1, the right zero divisors are either A or R. In the latter

case A has a unit. An example of a Zorn ring where the left zero

divisors coincide with A and the right zero divisors coincide with

R is furnished by the set of all 2X2 matrices with entries from a field

and with their second column consisting entirely of zeros.

We now give examples to show that something like the Zorn as-

sumption is needed to insure the validity of Theorems 1 and 2. Let C

be the ring of all polynomials with integer coefficients and zero con-

stant term. Let B be the direct sum of a countably infinite number

of replicas of C. Finally let A be the ring obtained by adjoining a unit

to B in the usual fashion [10, p. 87]. Then the zero divisors of A form

an ideal, namely the ring B, but A is semi-simple.

The hypothesis of Theorem 2 is somewhat redundant. For if A is

an alternative ring with a nil radical R and A — R is a division ring,

then A is automatically a Zorn ring. However, if we merely assume

that R is nil and A — R is a domain of integrity, Theorem 2 no longer

holds. The following example is offered. Let B and C be the additive

groups of order 2 and 3 respectively made into zero rings. Let D

= B®C and adjoin a unit to D in the usual manner, using the

ordinary integers. The resulting ring A has D for a radical and A—D

is the ring of integers. However the zero divisors in A do not form

an ideal.

* Cf. the proof of Theorem 5.
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3. Zero divisors in the center. By the center C of a Zorn ring A we

mean the set of all c in A for which (c, A) = (c, A, A) =0. Suppose

that all the left zero divisors lie in C; it is then clear that all the right

zero divisors lie in C. If A properly contains C we have the following

Lemma 1. Let A be an alternative ring with all the zero divisors in the

center C. If A properly contains C the zero divisors form an ideal.

Proof. If m is a zero divisor it is clear that any multiple of u is

also a zero divisor. If A is noncommutative there is a pair of elements

*, y in A with (*, y)=xy—yx^O. If u is any zero divisor of A, an

easy computation shows that u(xy—yx) =0. Hence the difference of

any two zero divisors is again a zero divisor. A similar argument

works if A is nonassociative.

For the remainder of this section we shall assume that A is a Zorn

ring properly containing its center C and that all zero divisors lie in

C. There are now two possibilities; if the only zero divisor is 0 it is

easily seen that A is a division ring. On the other hand if nonzero

zero divisors are present, the proof of Lemma 1 shows that every

commutator and associator is a zero divisor and so an application of

Theorems 1 and 2 and Lemma 1 yields the following: The set of

zero divisors coincides with the radical R of A, A — R is a com-

mutative associative field F, and the only nonzero idempotent of A

is its unit. Furthermore, by the Zorn assumption it follows that every

element of A not in R has an inverse. In particular, therefore, C—R

is a field Z.
Since every associator and commutator is in the center, (2.7) and

(2.9) of [l] show that the mapping *—>Dvzx = (x, y, z) is a derivation.

Again using the fact that all associators are in the center we obtain

the following formula:

(3.1) Dy,(cxm) = mcxm~lDyzx = mcxm~l(x, y, z) for c in C[y, z].

By using (2.6) of [l] and the Theorem of Artin we see that in certain

special cases the mapping x—*DyX = (*, y) is a derivation ; in fact we

have

(3.2) Dv(cxm) = mcx^DyX = mcx^^x, y) for c in C[y].

We now consider the structure of F over Z. First suppose F is of

characteristic zero. Assume that A is nonassociative and that F is

of transcendence degree less than 3 over Z. Then there are three ele-

ments *, y, z in A such that (*, y, 2)7*0. These map into elements

*, y, z oí F and we may always assume, by relabelling if necessary,

that for some minimal n
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/(*, y, z) = Pn(y, z)*n + • • • + Po(y, z) = 0

where P< lies in Z[y, z] and P„^0. Lifting/ to A we obtain a rela-

tion

/(*, y, *) = Qn(y, z)x" + ■ ■ ■ + Q0(y, z) = 0

where Qi is in C[y, z] and Qn^0. But then

Dytf = [nQn(y, z)xn~1 + ■ ■ ■ + Qo(y, z)](x, y, z) = g(x, y, z)(x, y, z) = 0.

Since (*, y, z) j¿ 0 this shows that g(x, y, z) is in R. But then g(x, y, z)

= 0 in F, contradicting the minimality of n. In case A is associative

but noncommutative a similar argument will show that the trans-

cendence degree of F over Z is at least 2.

Suppose now that F is of characteristic p^O. Then p=pe, e the

unit of A, is in R so that by Lemma 1, p(x, y, z)=p(x, y)=0, for

any *, y, z in A. Formulae (3.1) and (3.2) then show that *" is in C

for all * of A. Thus F is a purely inseparable extension of Z, in fact

every element of F satisfies an equation of the type W—a = 0, a in

Z. By methods similar to the ones used in the case of characteristic

zero we can show that Z is of transcendence degree at least 2 over its

prime field. Summing up we have

Theorem 3. Let A be a Zorn ring properly containing its center C

and with all its zero divisors in C. Then A is a division ring or the set

of zero divisors coincides with the radical R?±(0) of A. In the latter case

A—R is a field F and C—R is a field Z. If F has characteristic zero
then it has transcendence degree at least 2 over Z. If F has characteristic

pj^O then F is a purely inseparable extension of Z and Z has trans-

cendence degree at least 2 over its prime field.

Corollary. Let A be an algebraic alternative algebra over a quasi-

algebraically closed perfect field* with all its zero divisors in the center,

then A is associative and commutative.

Theorem 3 generalizes a theorem of Herstein [2].

We now give examples of associative noncommutative Zorn rings

with every zero divisor in the center. Let H he the field of rational

functions in two variables *, y over the field of two elements. Let J be

the commutative algebra H+Ha, with a2 = 0. Finally let A be the

algebra J+Ju+Jv+Jw over / with the multiplication table:

4 A field is said to be quasi-algebraically closed and perfect if it satisfies the fol-

lowing: (i) There are no noncommutative alternative algebraic division algebras over

it. (ii) If the field is of characteristic p7¿0, it contains with every element its ptli root.

Examples of such fields are given by algebraically closed fields and finite fields.
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w

w

a + w

au + xv

w

yu

xv

yu + av

xy + aw

Then A is an associative algebra of finite dimension over H and

thus is a Zorn ring. The zero divisors are all the multiples of a and so

lie in the center. However (u, v)t£0, and A is noncommutative.

Here Z = H and F = H(x"2, y1'2).

Our second example is obtained as follows. Let P be the field

of all rational numbers and let J be the commutative algebra P+Pa,

with a2 = 0. Let B be the algebra over J with basis elements

«»*/> i,j = 0, 1, 2, • • • , with the multiplication

UijUkh = Ui+k,j+h — jkaui+k-i.j+h-i.

Then B is an associative, noncommutative algebra with all

its zero divisors in the center. It is, however, not a Zorn algebra,

but we can embed B in an algebra A of right quotients using

the method outlined on pp. 118-119 of [4]. It is only necessary to

verify that for any two elements a and ß of B with ß not a zero di-

visor, there exist elements au ßi of B such that ßai = aßu with p\ not a

zero divisor. For ßx we choose ß2 and set ai = 2aß — ßa. To see that

cti and ßi actually satisfy the condition it is only necessary to note

that all commutators of B lie in the center. The algebra A is then

seen to be a Zorn algebra with all its zero divisors in the center. In

this case Z = P and F = P(x, y), * = «10, y = «oi transcendental over P.6

The method of the last example can be used to treat the case of

an arbitrary associative ring B with all its zero divisors in the center.

In fact such a ring is either a domain of integrity or it has nonzero

zero divisors. In the latter case if it properly contains its center it

can be embedded in a right quotient ring A. Indeed, exactly the

same cti and ßi as in the second example can be chosen. The ring A

is an associative ring properly containing its center C and with all

of its zero divisors in C. The zero divisors then form an ideal I and

again we have fields F = A—I and Z = C—I. Since A is noncommuta-

tive, the structure of F over Z must be exactly the same as in

Theorem 3.

4. Nilpotent elements in the center. We now study alternative

rings in which all the nilpotent elements lie in the center. However

6 Added in proof March 9, 1953. It can easily be seen that R, the radical of A, is

aA, so that 2?* = 0. However, the algebra A provides a counter-example to the prin-

cipal Wedderburn theorem: If A =R+P(x, y), it would be commutative.
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we first of all restrict ourselves to the associative case. An easy

computation shows that all the idempotents lie in the center [3,

Lemma 2]. We first prove a result which is stated as an exercise in

some lecture notes of Professor Kaplansky.

Lemma 2. Let A be an associative ring with the descending chain con-

dition on right ideals. Suppose that all the nilpotent elements lie in the

center of A. Then A is a direct sum of a commutative nil ring and a finite

number of rings each of which has all its zero divisors in the center.

Proof. Let ex, ■ • • , en be a maximal set of orthogonal idempotents

in A. If e= JX, A(l—e) is nil and Aei is a two-sided ideal since e, is

in the center. Thus A =A(1 —e) ®Aei® • ■ • ®Aen. Since eu ■ ■ ■ , en

is a maximal set of orthogonal idempotents, the only idempotent in

Aei is c<, its unit. Suppose a is a zero divisor in Ad; then ab = 0, 6^0.

If a were non-nilpotent, since Aei is in particular a Zorn ring, there

would be an a' in Aei such that a'a=Bi. This would lead to 6 = 0, a

contradiction.

The only other class of rings we study in this connection are

alternative algebraic algebras. We have first

Lemma 3. Let A be an associative algebraic algebra over a quasi-

algebraically closed perfect field. Suppose that all the nilpotent elements

of A are in the center. Then A is commutative.

Proof. Since the radical R of A is a nil ideal R is commutative.

Furthermore R consists of all nilpotent elements of A so that A — R

has no nonzero nilpotents. Then the corollary to Theorem 6 of [5]

and the properties of the base field show that A — R is also commuta-

tive. Thus R and A — R are locally finite, and so, by Theorem 15 of

[5], A is also locally finite. Hence if *, y are any two elements of A

they generate a finite-dimensional algebra D, with all its nilpotents

in the center. Lemma 2 in conjunction with the corollary to Theorem

3 shows that D, and hence A, is commutative.

To extend this result to an alternative algebraic algebra satisfying

the conditions of Lemma 3 we proceed as follows: We consider the

subalgebra generated by two elements of A. By the Theorem of Artin

it is associative and so we can apply Lemma 3 to see that it, and

hence A, is commutative. If the base field $> is not of characteristic 3

it follows immediately that A is also associative [l, (2.6)]. If how-

ever 4> is of characteristic 3 we first note that the commutativity of A

implies that *—>(*, y, z) is a derivation. Thus *3 is in the center of A

for all * in A. Now we consider the finite-dimensional commutative

associative algebra $(x) generated by * over $>. If R(x) is the radical

of <p(x), 4>(x) — R(x) is a direct sum of finite algebraic extension fields
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of <£. Since 3» is perfect each of these is also, and so every element of

<$(*)— R(x) has a cube root. Thus x = yz+r where y is in A and r is

nilpotent, and this implies that * is in the center of A. We have

proved

Theorem 4. Let A be an alternative algebraic algebra over a quasi-

algebraically closed perfect field. Suppose that all the nilpotent elements

lie in the center of A. Then A is associative and commutative.

5. Banach algebras. We now give results analogous to those of

§§2 and 3 for Banach algebras. In what follows the Banach algebras

will always be taken as real, i.e. the underlying Banach space is a

vector space over the real numbers. The concept of a left zero divisor

is replaced by that of a left topological zero divisor: * is a left topo-

logical zero divisor if there exists a sequence y„, ||yn|| = l, such that

*Vn—»0. We recall the definition of the spectrum, s(x), of an element

* of a real Banach algebra. The complex number \=a+iß?±0 is in

s(x) if and only if (x2 — 2ax)/a2+ß2 is not quasi-regular. For a dis-

cussion of s(x) as well as the definition of the radical we refer to

[6] and [ll]. Here we only note that s(x) is a bounded closed subset

of the complex plane.

Theorem 5. Let A be a real Banach algebra. Suppose that the set

Lj^A of left topological zero divisors forms a left ideal. Then L=R, the

radical of A, and A—R is the reals, complexes, or quaternions. Con-

versely, if A—R is the reals, complexes, or quaternions, L = R or A.

Proof. It is well known that R is contained in L. Let a, not in R, be

a left topological zero divisor. Then we may assume that s(a) 5^0, for

since a is not in R some left multiple of a has that property. Let

^o = cto+ißo be a nonzero boundary point of s(a). Then, by Lemma 3.3

of [6], l+(a2 — 2ctoa)/al+ßl and hence c$>+ß\ — 2a<ft+a2 is a left

topological zero divisor.6 Now if b is any element of A, —2ctoba,

ba2, and b[o^+ß% — 2ctoa+a2] are all elements of L. Since L is a left

ideal this implies that (al+ßl)b, and hence b, is in L. This contra-

dicts L^A, so L=R. Thus b[l + (a2-2ctoa)/c%+ß%] is in R for all b

in A and for \0=cto+ißo a nonzero boundary point of s(a). Hence

A—R has a right unit ü. But if « is a representative of ü in A,

u[l + (b2-2a'b)/a'2+ß'2] is in R, where b is not in R and \'=a'+iß'

is a nonzero boundary point of s(b). Thus every nonzero element

oí A—R has a right inverse, so that A — R is a division algebra. But

' Even if there is no unit we may evidently speak of \+x, where X is a scalar, as

being a left topological zero divisor.
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the only real Banach division algebras are the reals, complexes, or

quaternions.

If A —R is the reals, complexes, or quaternions, since s(a) =s(a+R),

s(a) consists of at most two points for all a in A. Thus by Theorem 1.5

of [ll] either L=A or there exists a unit e in A. In the latter case if

a is not in R we know that there is an a' in A such that a'a=e+r, r

in R. But e+r has an inverse in A, so that a has an inverse also, thus

L=R.
Corresponding to Theorem 3 we have

Theorem 6. Let A be a real Banach algebra with all its topological

zero divisors in the center, C. Then A is either the quaternions or it is

commutative.

Proof. If A has no nonzero topological zero divisors it is well

known that A is the reals, complexes, or quaternions. Suppose now

that nonzero topological zero divisors are present and lie in C. If A

properly contains C the same arguments as in §3 show that the set

of topological zero divisors is an ideal and so must coincide with R

the radical of A. Since just as before the commutators, (*, y),

lie in R, A— R is the reals or complexes. However, C is also a real

Banach algebra with no topological zero divisors outside R. Combin-

ing Theorem 5 with that fact that A contains C properly we see

that C—Ris the real field. Then A— R is a quadratic extension of

C—R. The same reasoning as in the proof of Theorem 3 then shows

that A must be commutative.

Kaplansky7 has shown that a complex B* algebra with all its

nilpotents in the center is commutative. This theorem provides an

analogue to our Theorem 4.
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