
DUAL MODULES OVER A VALUATION RING. I

IRVING KAPLANSKY1

1. Introduction. The present investigation is inspired by a series

of papers in the literature, beginning with Prüfer [8],2 and continuing

with Pietrkowski [6; 7], Krull [2; 3], Vilenkin [10; 11 ], and Schöne-

born [9]. While the formulation varies somewhat from paper to

paper, the fundamental object of study in all of them is a linearly

compact module over the p-adic integers, in the sense of the following

definition.

Definition. Let R be a topological ring. By a linearly compact

2?-module we mean a topological i?-module M (multiplication be-

tween R and M jointly continuous) satisfying the following two

conditions:

(a) M has a set of submodule neighborhoods of 0,

(b) M has the "compactness" property for cosets of closed sub-

modules; that is, if a set of congruences

x = ai (mod Sí), Si a closed submodule of M,

is such that every finite subset has a solution in M, then the entire

set has a solution in M.

If R is a (discrete) field this coincides with the definition given by

Lefschetz [4]. The basic properties of linearly compact modules have

been worked out by Zelinsky [12]. In this paper we are concerned

with the case where R is the ring of p-adic integers, or more generally

a complete discrete valuation ring, and we shall develop a theory of

duality.

In [3] Krull observed that a compact totally disconnected primary3

abelian group G is an example of a linearly compact module over the

p-adic integers. Now Pontrjagin's duality theory reduces the study of

G to that of its character group G*, a discrete primary group about

which an immense amount is known. The author's contribution in

this paper is the observation that the most general linearly compact

module over the p-adic integers is similarly dual to an (equally gen-

eral) discrete module. The duality has to be taken, not relative to

the reals mod one, but to its primary subgroup (Priifer's group of

type pK).
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In §5 we indicate how this duality clarifies the work of the authors

cited above.

2. Abstract dual modules. In proving certain basic results it is

enlightening to begin, not with topological modules, but with a purely

algebraic formulation after the model of Mackey [5].

Let R be a complete discrete valuation ring,4 K its quotient field.

We shall denote by R0 the 2?-module K/R. We say that the J?-modules

M and N are dual (or that M is paired to N) if we are given a bilinear

inner product (*, y) defined for * in M, y in N and taking values in

Ro, which is nondegenerate in the sense that no nonzero element of

M (resp. N) annihilates all of N (resp. M).
Let 5 be a submodule of M. We define its annihilator S' to be the

set of all y in N with (S, y) = 0. We call 5 closed il S = S". There is

a natural way of construing 5 and N/S' to be dual modules ; if 5 is

closed we can do the same with M/S and S'.

We leave to the reader the proof of the following lemma.

Lemma 1. Let M and N be dual modules, S a closed submodule of M,

and T a submodule of M containing S. Then T is closed if and only if

T/S is closed in M/S (the latter being paired to S').

By the full dual of an i?-module M we mean the module of all

homomorphisms of M into i?0. We shall see in Lemma 4 that M and

its full dual form a pair of dual modules. Note that if M and N are

dual modules, then N isa submodule of the full dual of M.

The following is essentially a generalization of Theorem III-l of

[5].

Lemma 2. Let M and N be dual modules, and let S be a submodule of

M of finite rank} Then S is closed. Also, S induces the full dual of N/S'.

Proof. By a finite number of applications of Lemma 1 we reduce

the problem of proving that 5 is closed to the case where 5 is of

rank one. Then S is known to be isomorphic to one of the four

modules R/p, R, Ro, or K. Since K may be treated in the two steps

R, and K/R = R0, we need actually only consider the first three

possibilities. The fact that S is closed now follows from the following

easily verified remark: if T is isomorphic to R (resp. Ro or R/p*),

then the full dual of T is isomorphic to Ro (resp. R or R/p'), and

4 That is, an integral domain with a unique nonzero prime ideal (p), complete in

the topology given by the powers of p.

6 An 2?-module is of rank n if every finitely generated submodule can be generated

by n or fewer elements, and n is the smallest such integer. It is known that an R-

module of finite rank is the direct sum of modules of rank one.
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moreover T cannot be paired to any proper submodule of its full dual.

In proving the last part of Lemma 2, we can assume without loss of

generality that S is all of M. In other words, M is now of finite rank

and we wish to show that it coincides with the full dual (say Mi) of

N. Now Mx and N are dually paired (this is clear even without

Lemma 4, for no nonzero element of N can annihilate M, let alone

Mx). Relative to the pair Mx, N we have that M'=0, M" = Mx. But

we showed above that M is closed. Hence M=Mlt as desired.

Since we now know that for modules of finite rank all submodules

will be closed, and since annihilation sets up a one-one order-inverting

correspondence between the closed submodules, the next lemma is

clear.

Lemma 3. Let M and N be dual modules. Then M satisfies the de-

scending chain condition if and only if N satisfies the ascending chain

condition.

3. The dual of a topological module. Let M be a topological R-

module, where R (as always) is a complete discrete valuation ring.

We define the dual M* to be the module of all continuous homo-

morphisms from M into Ro, where Ro has been awarded the discrete

topology. It is evident that a homomorphism from M into Ro is con-

tinuous if and only if its kernel is open.

It is not within the scope of this paper to discuss topologies for M*.

Lemma 4. Let M be a topological R-module with submodule neighbor-

hoods of 0, and M* its dual. Then M and M* form a pair of dual mod-

ules, that is, no nonzero element of M ts annihilated by all of M*.

Proof. Let * be a nonzero element in M. Select an open submodule

U of M, with * not in U. Let y denote the image of * in M/ U. We can

define a nontrivial homomorphism / of the cyclic submodule gen-

erated by y into i?0 (for example, send y into an element of order p).

It is well known that/ can be extended to a homomorphism g of all of

M/ U into Ro. By lifting up g to M we obtain the desired continuous

homomorphism not vanishing at *.

Lemma 5. Let M be a topological R-module with submodule neigh-

borhoods of 0, and S a (topologically) closed submodule. Then S is also

closed in the algebraic sense of being a double annihilator relative to the

dual modules M, M*.

Proof. The problem is to prove the existence of an element in M*,

vanishing on S, but not vanishing at a prescribed element not in S.

But the quotient module M/S again has submodule neighborhoods of

0, and to it we apply Lemma 4.
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We remark that conversely an algebraically closed submodule is

topologically closed, for it is the intersection of the kernels of con-

tinuous functionals.

4. Duality theorem. We are now ready to take up linearly compact

modules, and we first settle the question of when they are discrete.

Lemma 6. A linearly compact R-module is discrete if and only if it

satisfies the descending chain condition.

Proof. Suppose M is both linearly compact and discrete. For any

* in M we have, by the continuity of multiplication, that there exists

a neighborhood V of 0 in R such that Vx = 0. This says that * is

annihilated by some power of p, that is, M is a torsion module. Next,

let P be the submodule of M annihilated by p; P is a closed sub-

module and hence is again linearly compact6 (as well as discrete).

Now P may be regarded as a vector space over the field R/(p) ; we

borrow from the theory of linearly compact vector spaces the fact

that P is finite-dimensional. It is known that this (together with the

fact that M is a torsion module) implies that M has the descending

chain condition.

The converse is easy and valid over any topological ring.

To continue the analysis, we let M* denote the dual of the linearly

compact module M. We decree that M* is to be discrete (although

this point deserves further discussion). It is now possible to form the

(full) dual M** of M*, and by Lemma 4, M is isomorphically em-

bedded hi M**.

Theorem. Let Rbea complete discrete valuation ring and M a linearly

compact R-module. Then M coincides with its second dual M** both

algebraically and topologically, where M** is given the weak topology

induced by M*.

Proof. First we establish the algebraic isomorphism, that is, we

take an element z in M** and show that z lies in M. For any finitely

generated submodule 5,- of M* we have that z induces a homo-

morphism of Si into Rn. By Lemma 2 this homomorphism can also

be induced by an element ¿>,- of M/S't. Let a,- be any element of M

mapping on £>,. We form the congruences

* = a,- (mod S/)

and observe that any finite number have a solution. By linear com-

* Any closed submodule or continuous image of a linearly compact module is

linearly compact [12].
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pactness there exists a solution * of the entire set, and manifestly

z = x.

To check the coincidence of the topologies we begin by observing

that a neighborhood of 0 in the weak topology for M is precisely

the annihilator of a finitely generated submodule of M*. But an

open submodule of M, in the original topology, is exactly the same

thing. For the annihilator of a finitely generated submodule of M*

is open, being the intersection of a finite number of open kernels of

functionals. Conversely, let Uhe an open submoduk (hence closed).

By Lemma 5, U is the annihilator of U'. By Lemma 6, M/U has the

descending chain condition. By Lemma 3, U' is finitely generated,

since it is paired to M/ U.

5. Further remarks, (i) As an example of the use of duality, let us

look at two of the theorems in [3 ]. The first Hauptsatz on p. 36 asserts

that a torsion-free linearly compact module over the p-adic integers

is a (complete) direct sum of modules of rank one. It turns out that

the hypothesis that M is torsion-free translates into the statement

that M * is divisible (pM * = M*). Then one knows that M * is a direct

sum of copies of K or Ro. Dualizing, M is a direct sum of copies of

K or R. (One notes that the countability hypothesis that runs

through the work of Krull and Vilenkin is not needed here.)

The second Hauptsatz on p. 37 asserts more generally that a

"korrekt verknottet" module is a complete direct sum of modules of

rank one. Let T be the closure of the torsion submodule of M; its

annihilator T' is the set of elements of infinite height in M*. Now the

"korrekt verknottet" hypothesis splits into two parts, the first part

saying that M/T is torsion-free. This dualizes to T' being divisible,

whence it is a direct summand of M*, say M*=T'® W. The second

half of the hypothesis asserts that in p'xT=f\pnT the torsion sub-

module is dense. If X is the torsion submodule of W, the dual state-

ment is that W/X has no elements of infinite height. Now assume W

is countably generated; then a theorem of Prüfer tells us that W/X

is free. This makes X a direct summand of W. Another theorem of

Prüfer tells us that X is a direct sum of cyclic modules. In summary:

the second Hauptsatz translates into two theorems of Prüfer con-

cerning discrete modules, both of them requiring countability.

(ii) The work of Vilenkin falls nicely into place. A "coseparable"

group turns out to be an arbitrary module over the p-ad\c integers,

equipped with the compact-open topology induced by its full dual.

Similarly, the "weakly separable" groups are locally linearly compact

modules. The reader may convince himself that the results in [10,

Part II] and [ll] thus become reasonably transparent.
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(iii) The theory of dual modules has a connection with locally

compact abelian groups. One knows—cf. [l]—that the latter theory

may be reduced largely to the primary case. For primary locally

compact abelian groups the duality is officially taken relative to the

reals mod one; but actually only the primary subgroup of the reals

mod one shows up at all as values, as was observed by Krull in foot-

note 51 of [3]. In other words, locally compact primary abelian

groups are a special case of dual modules.

(iv) There is an application to linear transformations. Let V and

W be dual vector spaces with an inner product (*, y) in a field F.

Let T be a linear transformation on V which is locally nilpotent

(every vector annihilated by some power of T) ; suppose it has an ad-

joint T* on W which is also locally nilpotent. Let R be the ring of all

formal power series over F in a variable u. We can make V, W into

dual i?-modules by having u act on V, W as T, T* respectively and

defining the inner product as

[*, y] = (x, y)u~l + (Tx, y)u~2 + ■ ■ ■ (mod R).

The classification of T is equivalent to the classification of these dual

modules.

(v) The particular case of dual i?-modules annihilated by p coin-

cides with Mackey's theory of dual vector spaces. With a slight exag-

geration we may say that locally compact abelian groups and locally

convex topological linear spaces have thus merged into a single sub-

ject.

It seems clear that dual modules merit systematic investigation,

and we propose to do this in a subsequent paper.
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University of Chicago

A PROOF OF HESSENBERG'S THEOREM

ARNO CRONHEIM

About fifty years ago Hessenberg [l ] discovered that in a projec-

tive plane the Pappus property implies the Desargues property. In

all the proofs of this beautiful theorem [2-5 ] only the so-called gen-

eral case is treated so that some of the points and lines constructed

in the course of the proof may actually become indeterminate. In the

following lines we offer a proof of this theorem which takes care of all

possible cases. We show first how to reduce the discussion to two

cases only. The first of these cases may be treated by Hessenberg's

argument, but in the second one a different proof is needed.

We consider now a projective plane. Whenever the points X, Y,

and Z are collinear, then we write (X, Y, Z) ; and the fact that they

are not collinear we indicate by writing non(X, Y, Z). In order to

prove the Desarguesian closure property for our projective plane

it suffices to consider seven distinct points Ai, Bi, and 5 such that

the three lines At+Bi are distinct and meet in 5 and neither

(Ax, Ai, As) nor (Bit B2, B3). The following two properties of such a

configuration are independent of the Pappus property.

(1) non(At, Bi, Bk) and non(A{, Ak, Bk) for i^k.

Proof. This is obvious since S+Ai+Bi^S+Ak+Bk for i^k.

(2) If there does not exist a permutation (i, j, k) of the numbers

(1, 2, 3) such that nonC4,-, B¡, Bk) and non(Bk, Ait A,) simultaneously,

then either (Ax, B„, B¡) for all permutations (x, y, z) or (Bx, Av, A//)

for all permutations (*, y, z).

Proof. Let us assume without loss of generality non(5i, Ai, Az).

It follows from the hypothesis of (2) that (Ai, Bu B3) and (A%, Blt B2).

(Bz,   Ai,   Ai),   together   with    (A2,   Bu   B3),   would   contradict
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