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W. R. SCOTT

The following remarks were inspired by the discussion in Zassen-

haus [l, pp. 51-52] of multiply transitive holomorphs of groups.

Theorems 1,2, and 3 below generalize Theorem 6, Theorem 7, and

an untheoremed statement, respectively, in [l]. Additional relevant

theorems are given in [2].

Let G and H be groups. Let o(G) denote the order of G. Consider

the following statements.

(A„) o(G)tn+l, o(H)^n+l, and if a^G, x^H, i = l, ■ ■ ■ , »,

o.-T^Oy, and x^Xj for tVj, a.^Co, and x^es, then there exists a

homomorphism a of G into H such that ajo~ = Xi, i= 1, • • • , n.

(BB) o(G)^n+l,o(H)^n+l, and iibiGG and ytGH, i=l,
n+1, bi5¿bj and yt^y, for if*j, then there exists an h£H and a

homomorphism <r of G into H such that A(&,<r) =y,,i=l, ■ ■ • , n + 1.

The equivalence of (A„) and (B„) is first proved. Then conditions

for the validity of (A„) are investigated. For » = 1 the results are

incomplete, but for « ^ 2 they are complete. The proofs are all trivial.

We use the notation Q for commutator subgroup, and the term

infinitely divisible for a group H such that if hÇ^U and n is a positive

integer, then there exists an xÇ.H such that xn = h.

Lemma. The statements (A„) and (B„) are equivalent.

Proof. Suppose (B„) is true. Let (oi, • • • , an) and (xx, • • • , x„)

with the properties listed in (A„) be given. Let ¿>, = a¿ and yi=xit

i=l, • • • , n, while bn+i = ea and yn+i = eB. Then h, a exist as in (B„).

But h = en, hence (A„) is satisfied.

If (A„) holds, and (bx, ■ • • , bn+i) and (yu • • ■ , yn+1) as in (B„)

are given, let a, = Z>ñ+i^»'> xi=yñ+\yi, i=l, • • • , n. Let <r be the

homomorphism guaranteed by (A„) and let h be such that A(6n+i<r)

-y„+i. Then

h(bi(r) = yn+i(bn+io-)(b¡<r) = yn+i(a«r) = yit i = 1, • • • , n,

and (B„) holds also.
It is clear that in the above theorem homomorphism may be re-

placed throughout by anti-homomorphism or by isomorphism, while

into may be replaced by onto. This follows immediately from the

above proof except that for anti-homomorphisms, we let ai = bib~+1 in
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the second half of the proof.

In Theorems 1 and 2, (A„) may be replaced by (B„).

Theorem 1. If (Ai) is true and G is not torsion free, then all elements

of G and H (except eg and e#) have the same prime order p; and if,

furthermore, H is finite, then G is the direct product of groups of order p.

Conversely if o(G) > 1, o(H) > 1, and G is the direct product of groups of

prime order p while all elements of H are of order p, then (Ai) is true.

Proof. Since G is not torsion free, there is an a (EG of prime order

p. Then if x^H, x^e, we have aa = x for some a, hence o(x) =p also.

If £>£G, bp^e, then bpa = x for some x?*e and some <r, while bpa

= (ba)p = e, a contradiction.

Next, let H be finite. If G were non-Abelian, there would exist an

a(E.Q(G), aj^e, and, since H is a finite p-grouo, an xÇ.H—Q(IT), and

finally a a such that aa = x. But Q(G)aQQ(H) for all homomorphisms

(and anti-homomorphisms). Hence G is Abelian, and therefore the

direct product of groups of order p.

The converse is obvious and the proof will be omitted.

Remark 1. In the converse, if both G and H are direct products of

groups of order p, then additional requirements may be laid upon a

as follows: (i) if o(G)to(H), then G<r = H, and (ii) if o(G)^o(H),

then a is an isomorphism of G into H.

Remark 2. If G is torsion free and (Ai) holds, then H is infinitely

divisible. For if a(E.G, a¿¿e, x£H, x^e, then for any n there exists a

a such that an<r = x= (aa)n.

Theorem 2. (A2) holds if and only if either (i) G and H are both

direct products of groups of order 2, or (ii) H is a group of order 3 while

G is a direct product of groups of order 3.

Proof. If H is of order 3, then by Theorem 1 and Remark 2, G is

the direct product of groups of order 3.

Let o(H)>3. Suppose that ï£r7, x2¿¿e. Then there exists a yÇî.11

such that y^e, x, or x2. Ii a£G, a^e, then by Theorem 1, a29^e.

By (hi) there exists a a such that act = x, a2a = y, a contradiction.

Hence x2 = e for all xÇzH. By Theorem 1 and Remark 2, a2 = e for

all a(£G. Thus (A2) implies (i) or (ii).

Conversely the required homomorphisms are of standard construc-

tion. Again the additional conditions given in Remark 1 may be

imposed on <r.

Theorem 3. (A3) holds for loops G and H if and only if H is the
direct product of two groups of order 2 while G is the direct product of at

least 2 groups of order 2.
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Proof. Suppose (A3) holds. If o(H) >4, then there exist x, y, zÇLH

with x=¡¿e, y^e or x, z^e, x, y, or xy. There exist a, b(£G such that

a^e, b^e or a, and ab^e. Then there is a <r such that aa = x, ba=y,

and (ab)ff=z, a contradiction. Hence o(H) =4. But a loop of order 4

is a group. If, for a, b, cQG we have (ab)c^a(bc), then (even though

one of these products may equal ea) there is a <r such that ((ab)c)a

¿¿(a(bc))<x, i.e.,

((aa)(bo-))(c<r) * (aa)((ba)(co)),

a contradiction since H is a group. Hence G is associative and there-

fore a group. It follows from Theorem 2 that G and i/ have the stated

forms. (The proof for anti-homomorphisms is similar.)

The converse is again proved by exhibiting an obvious homo-

morphism.

Corollary. (A„) does not hold for loops for n>3.
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