TRANSITIVE SETS OF HOMOMORPHISMS
W. R. SCOTT

The following remarks were inspired by the discussion in Zassen-
haus [1, pp. 51-52] of multiply transitive holomorphs of groups.
Theorems 1, 2, and 3 below generalize Theorem 6, Theorem 7, and
an untheoremed statement, respectively, in [1]. Additional relevant
theorems are given in [2].

Let G and H be groups. Let o(G) denote the order of G. Consider
the following statements.

(As) o(G)2n+1, o(H)Zn+1, and if a;€G, x;€H, t=1, - - - , n,
a;7#a;, and x;7%x; for 1], a;5eq, and x;7en, then there exists a
homomorphism ¢ of G into H such that a0 =x;, =1, - - -, n.

(B,) o(G)Zn+1, 0(H)=n+1, and if ;E€G and y;€H, i=1, - - -,
n+1, b;>b; and y;#y; for 1], then there exists an hEH and a
homomorphism ¢ of G into H such that k(bo) =7y, t=1, - - -, n+1.

The equivalence of (A,) and (B,) is first proved. Then conditions
for the validity of (A,) are investigated. For n=1 the results are
incomplete, but for n = 2 they are complete. The proofs are all trivial.

We use the notation Q for commutator subgroup, and the term
infinitely divisible for a group H such that if k€ H and #» is a positive
integer, then there exists an x €H such that x*=h.

LEMMA. The statements (A,) and (B,) are equivalent.

Proor. Suppose (B,) is true. Let (al, «--,a,) and (%1, « ¢+ ¢+, %)
with the properties listed in (A,) be given. Let b;=a; and y;=x;,,
i=1, - - -, n, while bp;1=¢e¢ and y.;1=eg. Then k, o exist as in (B,).
But k=eg, hence (A,) is satisfied.

If (A,) holds, and (by, - - -, bay1) and (31, * - *, Yat1) as in (B,)
are given, let a;=by}\bi, *i=y511¥s» 1=1, -+, n. Let ¢ be the
homomorphism guaranteed by (A,) and let & be such that A(ba10)
=4y.+1. Then

h(b:0) = Yus1(bor10) (bi0) = Yasr(aic) = s, i=1--+,n

and (B,) holds also.

It is clear that in the above theorem homomorphism may be re-
placed throughout by anti-homomorphism or by isomorphism, while
into may be replaced by onto. This follows immediately from the
above proof except that for anti-homomorphisms, we let a;=bb;}, in
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the second half of the proof.
In Theorems 1 and 2, (A,) may be replaced by (B.,).

THEOREM 1. If (A,) is true and G is not torsion free, then all elements
of G and H (except eq and ex) have the same prime order p; and if,
Sfurthermore, H is finite, then G 1s the direct product of groups of order p.
Conversely if o(G)>1, o(H) > 1, and G is the direct product of groups of
prime order p while all elements of H are of order p, then (A,) is true.

Proor. Since G is not torsion free, there is an a €G of prime order
p. Then if x€H, x>e¢, we have ao =x for some ¢, hence o(x) = p also.
If bEG, br~e, then bPe=x for some x7e and some ¢, while bro
= (bo)?=e, a contradiction.

Next, let H be finite. If G were non-Abelian, there would exist an
aE€Q(G), ae, and, since H is a finite p-group, an xEH —Q(H), and
finally a ¢ such that aoe =x. But Q(G)o CQ(H) for all homomorphisms
(and anti-homomorphisms). Hence G is Abelian, and therefore the
direct product of groups of order p.

The converse is obvious and the proof will be omitted.

REMARK 1. In the converse, if both G and H are direct products of
groups of order p, then additional requirements may be laid upon o
as follows: (i) if o(G)=o(H), then Go=H, and (ii) if o(G) Zo(H),
then ¢ is an isomorphism of G into H.

REMARK 2. If G is torsion free and (A,) holds, then H is infinitely
divisible. For if a €G, a>e, xEH, x7e, then for any n there exists a
¢ such that a"e =x=(as)".

THEOREM 2. (Az) holds if and only if either (i) G and H are both
direct products of groups of order 2, or (ii) H is a group of order 3 while
G 1is a direct product of groups of order 3.

Proor. If H is of order 3, then by Theorem 1 and Remark 2, G is
the direct product of groups of order 3.

Let o(H) > 3. Suppose that x&€ H, x27e. Then there exists a y&EH
such that y#e, x, or x% If aEG, a=e, then by Theorem 1, a?se.
By (A.) there exists a o such that ae=x, a’s =y, a contradiction.
Hence x2=e¢ for all x&€H. By Theorem 1 and Remark 2, a?=e for
all aE€G. Thus (A,) implies (i) or (ii).

Conversely the required homomorphisms are of standard construc-
tion. Again the additional conditions given in Remark 1 may be
imposed on ¢.

THEOREM 3. (A;) holds for loops G and H if and only if H is the
direct product of two groups of order 2 while G is the direct product of at
least 2 groups of order 2.
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Proor. Suppose (A;) holds. If o(H) >4, then there exist x, ¥, 3€EH
with xe, y>£e or x, z5%e, x, ¥, or xy. There exist ¢, bEG such that
as“e, b¥=e or a, and ab>%e. Then there is a ¢ such that ae=x, bo=y,
and (@b)o =2, a contradiction. Hence o(H) =4. But a loop of order 4
is a group. If, for @, b, cEG we have (ab)c#a(bc), then (even though
one of these products may equal eg) there is a ¢ such that ((ab)c)o
#(a(bc))o, i.e.,

((a0)(ba))(co) # (ao)((bo)(ca)),

a contradiction since H is a group. Hence G is associative and there-
fore a group. It follows from Theorem 2 that G and H have the stated
forms. (The proof for anti-homomorphisms is similar.)

The converse is again proved by exhibiting an obvious homo-
morphism.

COROLLARY. (A,) does not hold for loops for n>3.
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