TRANSITIVE SETS OF HOMOMORPHISMS

W. R. SCOTT

The following remarks were inspired by the discussion in Zassenhaus [1, pp. 51-52] of multiply transitive holomorphs of groups. Theorems 1, 2, and 3 below generalize Theorem 6, Theorem 7, and an untheoremed statement, respectively, in [1]. Additional relevant theorems are given in [2].

Let G and H be groups. Let o(G) denote the order of G. Consider the following statements.

 (A_n) $o(G) \ge n+1$, $o(H) \ge n+1$, and if $a_i \in G$, $x_i \in H$, $i=1, \dots, n$, $a_i \ne a_j$, and $x_i \ne x_j$ for $i \ne j$, $a_i \ne e_G$, and $x_i \ne e_H$, then there exists a homomorphism σ of G into H such that $a_i \sigma = x_i$, $i=1, \dots, n$.

(B_n) $o(G) \ge n+1$, $o(H) \ge n+1$, and if $b_i \in G$ and $y_i \in H$, $i=1, \dots, n+1$, $b_i \ne b_j$ and $y_i \ne y_j$ for $i \ne j$, then there exists an $h \in H$ and a homomorphism σ of G into H such that $h(b_i\sigma) = y_i$, $i=1, \dots, n+1$.

The equivalence of (A_n) and (B_n) is first proved. Then conditions for the validity of (A_n) are investigated. For n=1 the results are incomplete, but for $n \ge 2$ they are complete. The proofs are all trivial.

We use the notation Q for commutator subgroup, and the term *infinitely divisible* for a group H such that if $h \in H$ and n is a positive integer, then there exists an $x \in H$ such that $x^n = h$.

LEMMA. The statements (A_n) and (B_n) are equivalent.

PROOF. Suppose (B_n) is true. Let (a_1, \dots, a_n) and (x_1, \dots, x_n) with the properties listed in (A_n) be given. Let $b_i = a_i$ and $y_i = x_i$, $i = 1, \dots, n$, while $b_{n+1} = e_d$ and $y_{n+1} = e_H$. Then h, σ exist as in (B_n) . But $h = e_H$, hence (A_n) is satisfied.

If (A_n) holds, and (b_1, \dots, b_{n+1}) and (y_1, \dots, y_{n+1}) as in (B_n) are given, let $a_i = b_{n+1}^{-1}b_i$, $x_i = y_{n+1}^{-1}y_i$, $i = 1, \dots, n$. Let σ be the homomorphism guaranteed by (A_n) and let h be such that $h(b_{n+1}\sigma) = y_{n+1}$. Then

$$h(b_i\sigma) = y_{n+1}(b_{n+1}^{-1}\sigma)(b_i\sigma) = y_{n+1}(a_i\sigma) = y_i, \qquad i = 1, \dots, n,$$

and (B_n) holds also.

It is clear that in the above theorem homomorphism may be replaced throughout by anti-homomorphism or by isomorphism, while into may be replaced by onto. This follows immediately from the above proof except that for anti-homomorphisms, we let $a_i = b_i b_{n+1}^{-1}$ in

Received by the editors April 22, 1952 and, in revised form, June 1, 1952.

the second half of the proof.

In Theorems 1 and 2, (A_n) may be replaced by (B_n) .

THEOREM 1. If (A_1) is true and G is not torsion free, then all elements of G and H (except e_G and e_H) have the same prime order p; and if, furthermore, H is finite, then G is the direct product of groups of order p. Conversely if o(G) > 1, o(H) > 1, and G is the direct product of groups of prime order p while all elements of H are of order p, then (A_1) is true.

PROOF. Since G is not torsion free, there is an $a \in G$ of prime order p. Then if $x \in H$, $x \neq e$, we have $a\sigma = x$ for some σ , hence o(x) = p also. If $b \in G$, $b^p \neq e$, then $b^p\sigma = x$ for some $x \neq e$ and some σ , while $b^p\sigma = (b\sigma)^p = e$, a contradiction.

Next, let H be finite. If G were non-Abelian, there would exist an $a \in Q(G)$, $a \neq e$, and, since H is a finite p-group, an $x \in H - Q(H)$, and finally a σ such that $a\sigma = x$. But $Q(G)\sigma \subseteq Q(H)$ for all homomorphisms (and anti-homomorphisms). Hence G is Abelian, and therefore the direct product of groups of order p.

The converse is obvious and the proof will be omitted.

REMARK 1. In the converse, if both G and H are direct products of groups of order p, then additional requirements may be laid upon σ as follows: (i) if $o(G) \ge o(H)$, then $G\sigma = H$, and (ii) if $o(G) \le o(H)$, then σ is an isomorphism of G into H.

REMARK 2. If G is torsion free and (A_1) holds, then H is infinitely divisible. For if $a \in G$, $a \neq e$, $x \in H$, $x \neq e$, then for any n there exists a σ such that $a^n \sigma = x = (a\sigma)^n$.

THEOREM 2. (A_2) holds if and only if either (i) G and H are both direct products of groups of order 2, or (ii) H is a group of order 3 while G is a direct product of groups of order 3.

PROOF. If H is of order 3, then by Theorem 1 and Remark 2, G is the direct product of groups of order 3.

Let o(H) > 3. Suppose that $x \in H$, $x^2 \neq e$. Then there exists a $y \in H$ such that $y \neq e$, x, or x^2 . If $a \in G$, $a \neq e$, then by Theorem 1, $a^2 \neq e$. By (A_2) there exists a σ such that $a\sigma = x$, $a^2\sigma = y$, a contradiction. Hence $x^2 = e$ for all $x \in H$. By Theorem 1 and Remark 2, $a^2 = e$ for all $a \in G$. Thus (A_2) implies (i) or (ii).

Conversely the required homomorphisms are of standard construction. Again the additional conditions given in Remark 1 may be imposed on σ .

THEOREM 3. (A₃) holds for loops G and H if and only if H is the direct product of two groups of order 2 while G is the direct product of at least 2 groups of order 2.

PROOF. Suppose (A_a) holds. If o(H) > 4, then there exist x, y, $z \in H$ with $x \neq e$, $y \neq e$ or x, $z \neq e$, x, y, or xy. There exist a, $b \in G$ such that $a \neq e$, $b \neq e$ or a, and $ab \neq e$. Then there is a σ such that $a\sigma = x$, $b\sigma = y$, and $(ab)\sigma = z$, a contradiction. Hence o(H) = 4. But a loop of order 4 is a group. If, for a, b, $c \in G$ we have $(ab)c \neq a(bc)$, then (even though one of these products may equal e_G) there is a σ such that $((ab)c)\sigma \neq (a(bc))\sigma$, i.e.,

$$((a\sigma)(b\sigma))(c\sigma) \neq (a\sigma)((b\sigma)(c\sigma)),$$

a contradiction since H is a group. Hence G is associative and therefore a group. It follows from Theorem 2 that G and H have the stated forms. (The proof for anti-homomorphisms is similar.)

The converse is again proved by exhibiting an obvious homomorphism.

COROLLARY. (A_n) does not hold for loops for n > 3.

BIBLIOGRAPHY

- 1. H. Zassenhaus, The theory of groups, New York, 1949.
- 2. R. H. Bruck, Loops with transitive automorphism groups, Pacific Journal of Mathematics vol. 1 (1951) pp. 481-483.

University of Kansas