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1. Introduction. Let 5 denote the class of functions

to

(1.1) F(z)   =  Z+Z«nZ"
n-1

which are regular and univalent in \z\ <1, and map each circle \z\

¿r < 1 onto a region starlike with respect to the origin. Let S denote

the class of functions

(1.2) #(f) = r + Z m—

which are regular, except for the simple pole, and univalent in

|f| >1 and map each circle |f| èp>l onto a region whose comple-

ment is starlike with respect to the origin.

In this paper we shall find upper bounds for

(1.3) Pi = Pi(z) = arg F'(z),       P2 = P2(f) = arg *'(f),

and

(1.4) F, = Fi(z) = arg F(z) - arg z, T2 = F2(f) = arg S>(f) - arg f

for F(z) CS and $>(f ) £2. For Pi, Tx, and T2 the bounds obtained will

be sharp.

The problem of finding the sharp upper bound for Pi was first

attacked by Bieberbach [2]1 who obtained the estimate

ii 2r ,    .
(1.5) | Pi(z) | ^ 2 arc sin r + arc sin-> \z\ = r,

1 + r2

which is sharp only in the limit as r—»1. Stroganoff [8] proved that

the sharp bound for Pi is attained for a function of the form z/(l —z)2

for an appropriate value of z, but his proof is rather long and compli-

cated. In §2 we shall present a proof of this result, which is both

shorter and simpler than the one given by Stroganoff.

Birnbaum [3] obtained upper bounds for P2 and T2. In §3 we

obtain the sharp bound for T2, and an improved bound for P2, and

our method brings to light the difficulty of finding the sharp bound
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1 Numbers in brackets refer to the bibliography at the end of the paper.
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for R2. The sharp bound for Ti is easy to obtain, and is added for

completeness.

Finally, we note that Urazbaev [9] has extended Stroganoff's

proof to the subclass of S, of functions which are A-wise symmetric

with respect to the origin. In §4 we note that our method is equally

valid for this subclass, and we state the result without details.

Bounds for R¡ and T¡ are of some geometric interest, since Rj is

the rotation of a lineal element at z under the transformation, and T¡

is the angular rotation, under the transformation, of the point z as

viewed from the origin.

2. The bound for Pi. We begin with two elementary lemmas.

Lemma 1. Let ux, u2, vi, v2, ax, a2 be positive and such that Ux<u2.

Then the inequalities

Vi Vt

(2.1) -£-
Ml U2

and

axVx/ux + ctiVi/ui      axVx + a2v2
(2.2) -g-—

«1 + «2 0¡1«1 + Ct2U2

each imply the other, and the equality sign occurs in (2.1) if and only if

it occurs in (2.2).

Lemma 2. Suppose that for the positive quantities a¡, u¡, v¡, j

= 1,2, ••• ,n, the following conditions are satisfied:

(2.3) — = —»    Vx^Vj, j=2,3,.-.,n,
«1        My

(2.4) Uj> 1/2, 7= 1,2, 3, •••,«,

and

(2.5) Z«y =2.

Then
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and the equality sign occurs in (2.6) only if it occurs in both parts of

(2.3) for all indices j.

The proofs of these two lemmas are direct and simple and we omit

them.

Robertson [7, p. 376] has proved that if/(z)£C, that is, if f(z)

= z+ • • ■ is regular and univalent in | z| < 1, and maps ] z\ < 1 onto a

convex region, then there exists a sequence of functions/„(z), of the

form2

(2.7) fn(z) =  f fl (1 - tea')-"dt
J o    y-1

where 6¡ is real, ay>0, j=l, 2, • • • , re, and «1+0:2+ • • •+a„ = 2,

such that/„(z)—>/(z), the convergence being uniform in any closed

circle \z\ ^r<l.

By Alexander's theorem [l] if/(z)GC, then F(z)=zf'(z)ES, and

conversely by integrating such an expression, if F(z) £5, then f(z)

G C. To obtain bounds for Pi it is therefore sufficient to examine func-

tions of the form

(2.8) F(z)=-
n

II (1 - eie,'z)ai
y-i

subject to the same conditions as (2.7). An easy computation, using

(2.8), (2.5), and the fact that arg F'(z) = $ log F'(z), yields

(2.9) Ri(z) = Z «;3 log        1        + 3 log ( Z  ,    "' „. - »)•
y_l 1 — ze'e> \ y_i   1 — zete> /

We next observe that it is sufficient to consider (2.9) only for 0 <z < 1.

For if Zo = reie* is a point at which arg F'(z) is a maximum, then Fi(z)

= e-ie«F(zeie<l)GS, and F( (r) = F'(re**). The problem, then, is to de-

termine the variables re, 0y, ay, subject to the restrictions already

made, so that for fixed r

(2.10) Pi(r) = Z «/3 log .., + 3 log ( Z  ,    gy ... - l)
y=i 1 — re'e> \ y^i   1 — re'6'        /

is a maximum.

Now the function w=(l— rz)~l = u+iv maps \z\ ^1 onto a circle

K in the w-plane with diameter end points 1/(1— r) and l/(l+r)

2 This is of course the Schwarz-Christoffel transformation, and it has frequently

been used as the basis of investigations. For further references see [5].
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>l/2. Setting w(eie')=Uj+ivj, equation (2.10) becomes

n

Z <*jVj
+ arc tan —

y_l My

(2.11) Ri(r) = J2 a, arc tan — + arc tan-—-= A + B.

(Z«y«y)
Since the circle K lies entirely in the half-plane 9t(w) > 1/2, and since

the log functions in (16) are determined by the requirement log 1=0,

it follows that in (2.11) the arc tan function lies between — w/2 and

tt/2.
The points w¡ = u¡+ívj lie on the boundary of K, and it is clear

that to maximize Ri(r) given by (2.11) one should first take t»y>0 for

j=l, 2, • • • , re. Secondly, if for some/, My>l/(1—r2), the center of

K, then w¡ can be replaced by a point for which v¡ is the same but

My<l/(1— r2), and both A and B will be increased by this change.

We can now number the distinct points w¡ so that 1/2 <Mi <m2 < • • •

<un and, since the points are on the boundary of K, 0<z/i<fl2< • • •

<»„. We form the ratios of Vj/u¡,j=l, 2, • • • , n, and note that either

the inequality (2.1) of Lemma 1 holds, or the inequalities (2.3) of

Lemma 2.

If the inequality (2.1) occurs, we leave unaltered the points

wi, j = 3, 4, ■ • • , re, and their associated 0y, ay, and we replace Wi and

w2 by the point Wx2 = axux+a2u2+i(axVx+a2v2) which lies inside K,

and associate with this point ai2=ai+a2. Since arc tan q is convex

downward for q>0,

»1 Vi
cti arc tan-\- a2 arc tan —

Ml M2

(2.12)
ctxVx/ux + a2V2/u2

< (ax + a2) arc tan-•
ax + a2

Combining this with the inequality (2.2), it follows that, in (2.11), A

is increased by the replacement of Wx and w2 by w12, and it is obvious

that B is unchanged. We may now replace w12 by a point on the

boundary of K leaving ui2 fixed but increasing vn, and this replace-

ment increases both A and B. This point determines a 0i2 which with

«i2 determines a new function F(z) of the form (2.8) with only re —1

terms in the product, and for which Ri(r) is larger than for the

original F(z). This process may be repeated, and after a finite number

of such steps, we have either an F(z) of the form (2.8) with only one

term in the denominator, or we arrive at an F(z) for which all the
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conditions of Lemma 2 are satisfied, with inequality in (2.3).

If the conditions of Lemma 2 are satisfied, replace w¡ by Wi for

j = 2, 3, • • • , n, and ax by ai+a2+ • • • +an. It is clear from in-

equality (2.3) that A is increased, and from inequality (2.6) that B

is increased. This completes the proof that Ri(r) assumes its maxi-

mum for a function of form F(z)=z/(l—zeie)2. Direct computation,

or a simplification of (2.11), yields, for this function,

r sin 0 r sin 0
(2.13)     Ri(r) = arc tan-■-1- 3 arc tan -

1 + r cos 0 1 — r cos 0

The extreme values occur in (2.13) for the roots of

(2.14) Q(cos 0) = 2r cos2 0 + 2(1 - r2) cos 0 - r(l + r2).

Since Ç(-l) = (r-2)(l-r2)<0, Q(0)<0, and 0(1) = (2+r)(l-r2)
>0, the extreme values of Ri(r) are obtained for 6 = 60 where

r2 - 1 + (1 + 3r*yi2
(2.15) cos 0o-

2r

Either the symmetry of the problem, or the fact that Ri(r) is an odd

function of 6, shows that the maximum corresponds to the first

quadrant angle and the minimum corresponds to the fourth quad-

rant angle given by (2.15).

Theorem 1. If F(z)ES, and 0<|z| =r<l, then

. . r sin 0o r sin 0O
(2.16)     | arg F'(z) | á arc tan-■-h 3 arc tan-

1 + r cos 0o 1 — r cos 0O

where 0<09<ir/2 is given by (2.15). This bound is sharp for each r,

equality occurring for Fu(z)=z/(l—z)2 at z = rea".

3. The bounds for Tu T2, and R2. From equation (2.8) with z = rei>,

we have

(3.1) Fi(z) = - Z «i arg (1 - ««*+">).
y-i

For \z\ til, the points w = (1 —rz) fill a circle of radius r and center at

w= 1, so that ¡arg (l—rz)\ ^arc sin r. This gives

Theorem 2. // F(z) ES, and 0<\z\ = r < 1, then

(3.2) | argF(z) — arg z | ^ 2 arc sin r.

This bound is sharp for each r, equality occurring for Fm(z) at z = rei9i,
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0i = arc cos r.

It is well known, and easy to prove, that the elements of 5 and 2

are related by

1 1
(3.3) *(f)=—,       z = —

F(z) f

and so f>(f)/f = z/F(z). This gives immediately

Theorem 3. 7/$(f)£2, and |f| =p>l, then

(3.4) | arg $(f ) — arg f | á2 arc sin p~l.

This bound is sharp for every p>l, equality occurring for $m(Ç)

= Ç-2+Ç-\

Birnbaum [3] obtained 2 arc sin p_1+7r/2 for the right side of (3.4).

From equations (3.3) and (2.8) it follows that for each f>(f)£2

there is a sequence of functions of the form

(3.5) *»(r) = rll(i-—- )

where 0y and ay satisfy the same conditions as in equation (2.7), such

that $„(f)—»$(f)> the convergence being uniform in any ring Kpi

£|f| áp2<°°.
Justas for Ri(r), it is sufficient to consider f=p>l. Setting p = l/r,

a computation from (3.5) yields

R*(p) = Z «y3 log (1 - «»') + 3 log ( Z -~~T - l)
y-i \ y-i   1 - re«*' /

n

(3.6) Z «y»y
= arc tan-^ a, arc tan — ~B — A,

(t«yMy)

y-i «y

where the points w¡ = Uj+ívj lie on the boundary of the same circle K

as in equation (2.11). Since

(3.7) \Ri(p)\^\B\ + \A\,

we have immediately, from the proof of Theorem 1, the following

result.

Theorem 4. //$(f)£2, and |f| =p = l/r>l, ¿Aere
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. . sin 0o sin 0O 3w
(3.8) I arg $'(f) | ^ arc tan-(- 3 arc tan-< —,

p + cos 0o p — cos 0o       2

where 0<60<w/2 is given by (2.15).

Obviously this result is not sharp for any value of p > 1, since

equality can occur in (3.7) only if re = 1, and then both A and B will

have the same sign. Indeed for the particular function $.jf(f)=f

-2+r1

(3.9) | arg <ï4(f) | ^ arc sin p~2 g *-/2.

Despite the attractive form of (3.9) it can easily be shown that

the constant 3tt/2 in (3.8) cannot be replaced by any smaller constant

valid for all p>l.

To prove this assertion, it is sufficient to consider the special

function 4>(f) which maps |f | >1 onto the exterior of an arrow. By

an arrow we mean the figure consisting of three line segments meeting

at a common end point. For simplicity we suppose the common end

point set at the origin, the other end points of the segments at

Jle±i(i-7)'-j and — s2, s,->0. Thus, the arrow is symmetrical about its

shaft and the angle between the barbs and the shaft is yir. The argu-

ment could now be concluded on the basis of known existence theo-

rems, and the theory of functions which map onto variable domains,

but we can avoid appealing to these results, since the formula is

explicitly known [4; 6] for such a special function <£(£). Indeed it is

not difficult to see that if 0 <y < 1, and 0 <0X <tt/2, then

/      îy-w      2 iv
(3.10) *tt) = r(l-yj       (l - y cos 0t + -J

maps |r| >1 onto the exterior of the arrow described above. The

critical points corresponding to the free end points of the line seg-

ment are f = — 1, and f = e±iß where

(3.11) cos/3 = y + (1 - y) cos0! > 0.

The lengths of the barb and the shaft are given by

(3.12) si= (1- cos 0i)(2 - 2yy-yyy

and

(3.13) 5i = 22-t(1 + cos0iK

As 0i—»0 it is clear that for each fixed y>0 Si—>0 and s2—»4, and
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since 0i>j3>O, it follows that ß—>0. The smaller arc on |f| =1

bounded by eiß and eiil is transformed by the function (3.10) into the

under side of the upper barb, the mapping being conformai on the

interior of the arc. Any radial line in the closed region | f | = 1 ending

at a point of this arc is transformed by i>(f) into a curve ending on

the under side of the upper barb and perpendicular to it. If ß<d<6x,

then arg $'(«*•) =3w/2—y—$. But y and 0i can be taken arbitrarily

small.

4. Starlike functions with symmetry about the origin. We denote

by Sk the subclass of S of functions of the form

(4.1) F(z) = z + Z «nz"k+1,
n-1

A a positive integer. For this subclass equation (2.8) can be re-

placed by

(4.2) F(z)=--—-,

n (i - «*"«*)■'y-i
where now

(4.3) t«y-4
y-i k

Equation (2.11) becomes

n j, .

(4.4)      Ri(r) = Z «y arc tan-H arc tan
y-i «y

A Z «y"y
y-i

( A Z «y«yj -

where w¡ = Uj+ívj lies on the boundary of the circle T which is the

image of \z\ ^ 1 under

w = (l—rkz)~1.

The same proof as before shows this is a maximum when all the w/s

are coincident.

Theorem 5. //F(z)£5*,and0< |z\ =r<l, then

i 2
(4.5) [ argF(z) — arg z\ á — arc sin rk

k
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and

.                . rk sin 0o
arg F'(z)   g arc tan -—

1 + r* cos 0o
(4.6)

A + 2 r* cos 0o
H- arc tan->

A 1 — rk cos 0o

where 0 <0o<tt/2 m gwere by

(k+l)(r2k-l) + ((k+l)2(l-r2k)2+Sr2k(l+r2k)y'2

(4.7)    cos 0o =->
4r*

ared ôo/A /Ae bounds (4.5) ared (4.6) are sharp for all r<l.
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