MONOTONIC SUBSEQUENCES

JOSEPH B. KRUSKAL, JR.

1. Introduction. Hidden in a paper by Erdös and Szekeres¹ is an intriguing result.

BASIC THEOREM. Every sequence $S = \{x_i\}$ $(i=1 \text{ to } n^2+1)$ of real numbers having (n^2+1) terms possesses a (perhaps not strictly) monotonic subsequence $M = \{x_{ij}\}$ (j=1 to n+1) having (n+1) terms. Furthermore (n^2+1) is the smallest number for which this is true.

Briefly, this theorem states that a monotonic subsequence of any desired length can be picked out from a sufficiently long sequence, and gives the precise lengths. An elegant proof of this theorem (unpublished) which is due to Martin D. Kruskal is sketched here.

NOTATION. Let S and T denote sequences, and let M and N denote monotonic sequences. Let S(p), etc., denote a sequence having p terms. Let $\psi(n)$ denote the least integer p such that every S(p) contains an M(n). In this notation we may restate the basic theorem thus:

Basic Theorem. For sequences of real numbers, $\psi(n+1) = n^2 + 1$.

To show that $\psi(n+1) \ge n^2 + 1$, it is sufficient to exhibit an $S(n^2)$ which contains no M(n+1). Such a sequence is the following:

$$n, \dots, 1, 2n, \dots, n+1, \dots, n^2, \dots, n^2-n+1.$$

To show that $\psi(n+1) \leq n^2+1$, assume the contrary and let n be the least integer such that $\psi(n+1) > n^2+1$. Let $S(n^2+1)$ be a sequence which does not contain any M(n+1). Now define a majorant (minorant) of S to be a term which is strictly greater (smaller) than all terms following it in S. The majorants (minorants) form a decreasing (increasing) subsequence of S; hence there are at most n majorants and n minorants. As the final term of S is necessarily both a majorant and a minorant, there are at most (2n-1) extremants (majorants and minorants). The last term of every M(n) contained in S must be an extremant. Now delete from S all its extremants. The remainder S' can contain no M(n), yet has at least $[(n^2+1)-(2n-1)]=[(n-1)^2+1]$ terms. Hence $\psi(n) \equiv \psi(n-1+1) > (n-1)^2+1$. This contradicts the definition of n and completes the proof.

Received by the editors April 7, 1952.

¹ P. Erdös and G. Szekeres, *A combinatorial theorem in geometry*, Compositio Mathematica vol. 2 (1935) p. 463. See the theorem on p. 467.

2. First generalization—real vector spaces. In the following two sections the concept of a monotonic sequence is generalized to sequences of vectors from a finite-dimensional real vector space and a partial analogue of the Basic Theorem is obtained. (If $S = \{x_i\}$ is a sequence from a vector space, the subscript still distinguishes terms of the sequence, *not* components of a vector.)

Note that a sequence $S = \{x_i\}$ of real numbers is monotonic if and only if all the differences $(x_{i+1}-x_i)$ lie (perhaps not strictly) to the same side of 0 on the real line. This motivates:

DEFINITION. A sequence $S = \{x_i\}$ of terms from a finite-dimensional real vector space is monotonic if there is a hyperplane H through the origin such that the differences $d_i = x_{i+1} - x_i$ all lie in one of the closed half-spaces determined by H.

This definition is further justified by:

LEMMA 1. A sequence S of vectors is monotonic if and only if there is a directed line L such that the perpendicular projections of the x; on L form an increasing sequence.

This lemma is easily proved by taking L and H to be perpendicular. The direction of any such line L is called a direction of monotonicity of S. In 1-space there are only two possible directions of monotonicity: increasing and decreasing. In r-space the possible directions of monotonicity correspond to the points on the (r-1)-sphere.

Any sequence of two real numbers is monotonic. This generalizes to:

LEMMA 2. In r-space any sequence of (r+1) terms is monotonic.

This can easily be proved geometrically.

NOTATION. For convenience, let the function $\psi(n)$ which applies in r-space be indicated by $\psi_r(n)$.

LEMMA 3. (a) If $S(n^2+1) = \{x_i\}$ is any sequence of (n^2+1) terms in r-space and L is any directed line in r-space, then S contains either a subsequence monotonic in the direction of L or a subsequence monotonic in the direction opposite to L. (b) $\psi_r(n+1) \leq n^2+1$.

PROOF. (a) follows easily from Lemma 1 and the Basic Theorem; (b) follows from (a). But (a) is much stronger than (b) because (a) says "for any $L \cdots$ " while (b) says implicitly "there exists an L such that..." This suggests that actually $\psi_r(n+1)$ is smaller than (n^2+1) in general.

What is the full generalization of the Basic Theorem to r-space? In other words, what is the function $\psi_r(n)$?

Conjecture. $\psi_r(n+r) = rn + (n^2 - n + 1)$.

This conjecture is based solely on the following collection of facts.

Basic Theorem. $\psi_1(n+1) = n + (n^2 - n + 1)$.

LEMMA 2 (New Form). $\psi_r(1+r) = r + (1-1+1)$.

THEOREM 1. $\psi_r(2+r) \le 2r+3 = 2r+(4-2+1)$.

LEMMA 4. For r=1 and 2, the \leq of Theorem 1 becomes =.

The proof of Theorem 1 is long and occupies the next section. For r=1, Lemma 4 is trivial. To prove Lemma 4 for r=2, it is sufficient to exhibit a sequence of 6 vectors from 2-space which contains no monotonic subsequence of 4 terms. That the following is such a sequence may be verified directly:

$$(2, -1), (3, 6), (-3, 12), (-3, -12), (3, -6), (2, 1).$$

3. Proof of Theorem 1. The basic tool in proving Theorem 1 is

LEMMA 5. If $S(p) = \{x_i\}$ is a sequence in r-space, then at least one of the following conditions is true:

- (a) S is monotonic;
- (b) there exist real numbers $\alpha_i > 0$ $(i = 1, \dots, p-1)$ such that $\sum \alpha_i d_i = 0$, where $d_i = x_{i+1} x_i$.

PROOF. It is sufficient to show that the falsity of (b) implies (a). Thus assume that 0 does not belong to the convex cone $C = \{ \sum \alpha_i d_i | \text{all } \alpha_i > 0 \}$. Then a well known theorem about convex sets yields that there is a hyperplane H through 0 such that \overline{C} (the topological closure of C) lies entirely in one of the closed half-spaces determined by H. Since d_i is in \overline{C} for all i, S(p) is monotonic, and the proof is complete.

COMMENT. It is possible to modify (b) into a necessary and sufficient condition for non-monotonicity. This condition might be useful in further investigation of the function $\psi_r(n)$.

Lemma 6 follows from Lemma 5.

LEMMA 6. Let

$$S(p) = \{x_s\}$$

be any sequence in r-space, and let

$$S'(q) = \{x_{s_i}\}$$

be a non-monotonic subsequence of it (of course $1 \le s_1 < s_2 < \cdots < s_q \le p$). Then there exists a (p-1)-tuple of real numbers $g = \{\gamma_e\}$ such

that $\sum \gamma_s d_s = 0$ where g satisfies the following "suitability conditions with respect to (s_1, \dots, s_q) ":

$$\begin{cases} \gamma_1 &= \cdots = \gamma_{s_1-1} = 0, \\ \gamma_{s_1} &= \cdots = \gamma_{s_2-1} > 0, \\ \vdots &\vdots &\ddots &\vdots \\ \gamma_{s_{q-1}} &= \cdots = \gamma_{s_{q-1}} > 0, \\ \gamma_{s_q} &= \cdots = \gamma_{p-1} = 0. \end{cases}$$

PROOF. By Lemma 5 there exist strictly positive α_i $(i=1, \cdots, q-1)$ such that

$$\sum_{i=1}^{q-1} \alpha_i [x_{si+1} - x_{s_i}] = 0.$$

Hence

$$\sum_{1}^{q-1} \alpha_i \left[\sum_{i=1}^{s_{i+1}-1} d_i \right] = 0.$$

Now define $g = \{\gamma_*\}$ as follows:

$$\begin{cases} \gamma_1 = \cdots = \gamma_{s_1-1} = 0, \\ \gamma_{s_1} = \cdots = \gamma_{s_2-1} = \alpha_1 > 0, \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{s_{q-1}} = \cdots = \gamma_{s_{q-1}} = \alpha_{q-1} > 0, \\ \gamma_{s_{q-1}} = \cdots = \gamma_{s_{q-1}} = 0. \end{cases}$$

Clearly $\sum \gamma_{\epsilon} d_{\epsilon} = 0$, and the proof is complete.

The structure of the (p-1)-tuple $g = (\gamma_1, \dots, \gamma_{p-1})$ can be represented by a *q-block diagram*. This is obtained by substituting in g an "X" for each nonzero γ , and "o" for each zero γ , and an "=" for each comma between two γ 's of one "block" of equal nonzero γ 's. A g which is suitable with respect to (3, 5, 6, 9) and which has 10 components is represented by the following 10-dimensional 4-block diagram: (0, 0, X = X, X, X = X = X, 0, 0). Block diagrams will be used extensively in the following arguments.

At this point it becomes necessary to consider the vectors of the fundamental r-space as r-tuples of real numbers. We shall write these r-tuples vertically and call them column vectors. We adopt the specific notation d_s = the column vector (δ_s^t) as $t=1, \dots, r$, where d_s has its usual significance. The sequence $\{d_s\}$, with s=1 to

p-1, now becomes a matrix $D = ||\delta_s^t||$ in which t=1 to r is the row index and s=1 to p-1 is the column index. We shall let d^t $(t=1, \dots, r)$ represent the rows of D.

We now put Lemma 6 into the proper form for actual use:

LEMMA 7. If $S(p) = \{x_i\}$ is a sequence in r-space, which does not contain any M(q), then for each (p-1)-dimensional q-block diagram there exists a (p-1)-dimensional row vector g such that g is perpendicular to all the d^i $(t=1, \dots, r)$ and such that g has the structure of the given q-block diagram.

PROOF. The q-block diagram corresponds to a subsequence $S'(q) = \{x_{s_i}\}$ of S. Apply Lemma 6 to S'(q) and rewrite the equation $\sum \gamma_s d_s = 0$ as r equations $\sum \gamma_s \delta_s' = 0$. These may be written $g \cdot d^t = 0$ or "g is perpendicular to d^t ." This completes the proof.

The last tool needed to prove Theorem 1 is

LEMMA 8. If $S(p) = \{x_i\}$ is not monotonic, the vectors d^i (t=1 to r) are linearly independent.

PROOF. As S is not monotonic, the d_s do not all lie on a common hyperplane through the origin, hence span the whole (r-dimensional) space of column vectors. Thus D has column-rank r, hence row-rank r, which completes the proof.

Theorem 1 is proved indirectly. Assume contrary to the theorem that $S(2r+3) = \{x_i\}$ contains no M(r+2).

By Lemma 8, the r (2r+2)-dimensional row vectors d^t are linearly independent. Now apply Lemma 7 to the following (r+2) different (2r+2)-dimensional (r+2)-block diagrams, and label the resulting g's as shown:

These g's are called the fundamental g's. Obviously the (r+2) fundamental g's are linearly independent. By Lemma 7 every fundamental g is perpendicular to every d^t . Therefore $[g(1), \dots, g(r+2), d^1, \dots, d^r]$ is a basis for the (2r+2)-space of row vectors. From this follows

LEMMA 9. Every g arising from application of Lemma 7 is a linear

combination of the fundamental g's.

At this point the proof of Theorem 1 splits into two cases, depending on whether r is odd or even; the former case is simpler and will be considered first.

Assume r is odd. Apply Lemma 7 to the following (r+1) different (2r+2)-dimensional (r+2)-block diagrams and label the resulting g's as shown:

With the aid of Lemma 9 it is easy to see that

$$\bar{g}(k) = \zeta(k)g(k) + \eta(k)g(k+1)$$

for properly chosen $\zeta(k) > 0$ and $\eta(k) > 0$. Introducing an obvious notation for the components of the g's and the \bar{g} 's, we have

$$\bar{\gamma}_{r+1}(k) = \zeta(k)\gamma_{r+1}(k) + \eta(k)\gamma_{r+1}(k+1)
= \bar{\gamma}_{r+2}(k) = \zeta(k)\gamma_{r+2}(k) + \eta(k)\gamma_{r+2}(k+1),$$

which yields that

$$[\gamma_{r+1}(k) - \gamma_{r+2}(k)] = -\epsilon(k)[\gamma_{r+1}(k+1) - \gamma_{r+2}(k+1)]$$

where $\epsilon(k)$ is a positive constant. Now

$$\gamma_{r+1}(1) - \gamma_{r+2}(1) > 0$$

because the first term is positive and the second term is 0. The preceding equation now yields successively

$$\gamma_{r+1}(2) - \gamma_{r+2}(2) < 0, \quad \gamma_{r+1}(3) - \gamma_{r+2}(3) > 0,$$

and so forth. Since r is odd, we obtain

$$\gamma_{r+1}(r+2) - \gamma_{r+2}(r+2) \equiv -\gamma_{r+2}(r+2) > 0$$

which is false. This completes the proof of Theorem 1 for odd values of r.

Now assume that r is even. The following notation is introduced for convenience:

$$\beta(k) \equiv \gamma_{r+1}(k) - \gamma_{r+2}(k), \qquad \beta'(k) \equiv \gamma_{r+1}(k) - \gamma_{r+3}(k).$$

Using the same method as in the preceding paragraph, the following inequalities are established (but without contradiction here):

$$\beta(k) > 0$$
 if k is odd; $\beta(k) < 0$ if k is even.

Now apply Lemma 7 to the following block diagrams and label the resulting g's as shown:

With the aid of Lemma 9 and the established inequalities for $\beta(k)$, it is not difficult to show that

$$\tilde{g}(k) = \zeta(k)g(k) + \eta(k)g(k+1) + \theta(k)g(k+2)$$

where $\zeta(k)$, $\eta(k)$, and $\theta(k)$ are positive constants. Translating these vector equations into component equations, and using the equalities among the components of the ξ 's, we have

$$\tilde{\gamma}_{r+1}(k) = \zeta(k)\gamma_{r+1}(k) + \eta(k)\gamma_{r+1}(k+1) + \theta(k)\gamma_{r+1}(k+2)
= \tilde{\gamma}_{r+2}(k) = \zeta(k)\gamma_{r+2}(k) + \eta(k)\gamma_{r+2}(k+1) + \theta(k)\gamma_{r+2}(k+2)
= \tilde{\gamma}_{r+3}(k) = \zeta(k)\gamma_{r+3}(k) + \eta(k)\gamma_{r+3}(k+1) + \theta(k)\gamma_{r+3}(k+2).$$

Subtract the second equation from the first, and then the third from the first:

$$0 = \zeta(k)\beta(k) + \eta(k)\beta(k+1) + \theta(k)\beta(k+2),
0 = \zeta(k)\beta'(k) + \eta(k)\beta'(k+1) + \theta(k)\beta'(k+2).$$

From these equations it follows that

$$\zeta(k) = \epsilon(k) \begin{vmatrix} \beta(k+1) & \beta(k+2) \\ \beta'(k+1) & \beta'(k+2) \end{vmatrix},$$

$$\eta(k) = \epsilon(k) \begin{vmatrix} \beta(k+2) & \beta(k) \\ \beta'(k+2) & \beta'(k) \end{vmatrix},$$

$$\theta(k) = \epsilon(k) \begin{vmatrix} \beta(k) & \beta(k+1) \\ \beta'(k) & \beta'(k+1) \end{vmatrix}$$

where $\epsilon(k)$ is a properly chosen constant of proportionality.

Call the three determinants Z(k), H(k), and $\Theta(k)$ respectively. Since $\zeta(k)$, $\eta(k)$, and $\theta(k)$ are all positive, Z(k), H(k), and $\Theta(k)$ must all have the same sign as $\epsilon(k)$. Furthermore, as $Z(k) \equiv \Theta(k+1)$, all the determinants have the same sign for all k (from 1 to r). To evaluate the sign of $\Theta(1)$ we use the already established inequalities for the β 's and find the sign of the β ''s from direct examination of the block diagrams of the g's. We see that

$$\Theta(1) = \left| \begin{array}{cc} + & - \\ + & + \end{array} \right| > 0,$$

so that all the determinants are positive.

Similarly, we find that

$$\mathbf{Z}(1) = \left| \begin{array}{cc} - & + \\ + & ? \end{array} \right|.$$

For this to be positive, "?" must be "-", so that $\beta'(3) < 0$. Using this result we see that

$$Z(2) = \begin{vmatrix} + & - \\ - & 2 \end{vmatrix}.$$

For this to be positive, "?" must be "+," so that $\beta'(4) > 0$. Similarly, $\beta'(5) < 0$, $\beta'(6) > 0$, and so forth. Since r is even, $\beta'(r+2) > 0$; however, direct examination of the block diagram shows that $\beta'(r+2) < 0$. This contradiction completes the proof of Theorem 1 for even values of r, and hence the whole proof.

4. Second generalization—relation spaces. In the following sections we again generalize the Basic Theorem, but in a manner quite different from that of the preceding sections.

The Basic Theorem is not in essence a statement about the real number system. To see this, consider any set X with an arbitrary binary relation \subset over it. (No assumptions are made about \subset ; for example, it need not be transitive.) Let us say that $S = \{x_i\}$ is \subset -monotonic (\subset -monotonic) if $x_i \subset x_{i+1}$ ($x_i \subset x_{i+1}$) for all i. Call S monotonic if it is either \subset -monotonic or \subset -monotonic. Then for sequences over X it is still true that $\psi(n+1) \leq n^2+1$, and for a "general" space X it is true that $\psi(n+1) = n^2+1$. The inequality may be proved exactly as before.

What is the meaning of the "2" in (n^2+1) ? The answer $\stackrel{*}{\rightleftharpoons}$ simple: it is the number of relations (\subset and \subset) of which at least one must hold between any two elements. The "2" is generalized to a "k" in Theorem 2.

DEFINITION. A k-relation space (kR-space for short) consists of a set X and k binary relations \subset_h over X ($h=1, \dots, k$) satisfying one axiom: for every x, y in X, there is at least one h depending on x and y such that $x \subset_h y$.

DEFINITION. A sequence $S = \{x_i\}$ is \subset_h -monotonic if $x_i \subset_h x_{i+1}$ for all i.

DEFINITION. A sequence S is monotonic if there is at least one h for which it is \subset_h -monotonic.

EXTENDED BASIC THEOREM. For sequences over a 2-relation space, $\psi(n+1) \le n^2+1$. Furthermore, there are 2-relation spaces for which $\psi(n+1) = n^2+1$.

THEOREM 2. For sequences over a kR-space, $\psi(n+1) \leq n^k+1$. Furthermore, there are kR-spaces for which $\psi(n+1) = n^k+1$.

In the kR-space to be described $\psi(n+1) = n^k + 1$. Let X consist of all real polynomials in the variable ξ of degree $\leq k-1$. The relations \subset_k are defined by

$$p(\xi) \subset_h q(\xi)$$
 if $[p(\xi) - q(\xi)]$ has exactly degree $(k - h)$.

(The zero polynomial is assigned degree 0.) It is trivial to show that this is a kR-space, and the following $S(n^k)$ contains no M(n+1):

$$\xi^{k-1} + \xi^{k-2} + \cdots + \xi + 1,$$

$$\xi^{k-1} + \xi^{k-2} + \cdots + \xi + 2,$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\xi^{k-1} + \xi^{k-2} + \cdots + \xi + n,$$

$$\xi^{k-1} + \xi^{k-2} + \cdots + 2\xi + 1,$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\xi^{k-1} + \xi^{k-2} + \cdots + 2\xi + n,$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\eta^{k-1} + \eta^{k-2} + \cdots + \eta^{k-1} + \eta^{$$

The proof² that $\psi(n+1) \le n^k+1$ in a k-relation space rests on Lemma 10 which (for real numbers) is stated in the paper by Erdös and Szekeres.

² For the basic idea of this proof I am indebted to the referee, who suggested a proof far simpler than the one originally contained in my paper. However, by using Lemma 10, not originally in my paper and not known to the referee, I have further simplified his proof.

LEMMA 10. If $(X, \subset_1, \subset_2)$ is a 2-relation space, then any sequence S(pq+1) either contains a \subset_1 -monotonic subsequence M(p+1) or a \subset_2 -monotonic subsequence M(q+1).

This lemma may easily be proved in the same way as the Extended Basic Theorem.

Now we proceed by an induction on k. If $(X, \subset_1, \cdots, \subset_{k+1})$ is a (k+1)-relation space, and $S(n^{k+1}+1)$ is a sequence over it, define \ll_1 and \ll_2 by

$$x \ll_1 y$$
, if $x \subset_h y$ for any h from 1 to k , $x \ll_2 y$ if $x \subset_{k+1} y$.

Now (X, \ll_1, \ll_2) is a 2-relation space. Hence by Lemma 10, S contains either $M_1(n^k+1)$ which is \ll_1 -monotonic or $M_2(n+1)$ which is \ll_2 -monotonic. In the latter case the proof is complete as $M_2(n+1)$ is also \subset_{k+1} -monotonic. In the former case, let M_1 denote the set of elements in $M_1(n^k+1)$ and define \subset^h over M_1 by

$$x \subset^h y$$
 if $x \subset_h y$ or if y precedes x in $M_1(n^k + 1)$.

Then $(M_1, \subset^1, \cdots, \subset^k)$ is a kR-space. Hence by the induction hypothesis $M_1(n^k+1)$ must contain an M(n+1) which is \subset^h -monotonic for some h from 1 to k. But then M(n+1) is \subset_h -monotonic, which completes the proof.

5. De Bruijn's Theorem—a generalization. In some unpublished work N. G. de Bruijn has generalized the Basic Theorem to sequences of *m*-tuples of real numbers. He defines such a sequence to be monotonic if each component sequence is monotonic. (Thus there are 2^m "directions" of monotonicity.)

DE BRUIJN'S THEOREM. Over the space of m-tuples, $\psi(n+1) = n^{2^m} + 1$.

His proof is simply an m-fold application of the Basic Theorem. From $S(n^{2^m}+1)$ pick a subsequence $S_1(n^{2^{m-1}}+1)$ whose first components are monotonic. From S_1 pick a subsequence $S_2(n^{2^{m-2}}+1)$ whose second components are monotonic; and so forth. This eventually yields $S_m(n+1)$ which is monotonic. This shows that $\psi(n+1) \leq n^{2^m}+1$; the opposite inequality is easily verified.

De Bruijn's Theorem inspires Theorem 3, which is at once a generalization of De Bruijn's Theorem and of Theorem 2.

DEFINITION. A joint relation-space with coefficients k_1, \dots, k_m consists of m different relation-spaces over the same set X such that the lth space is a k_lR -space.

The relations are denoted by \subset_h^l , where $h=1, \dots, k_l$ and $l=1, \dots, m$.

DEFINITION. A sequence is monotonic over a joint relation-space if it is simultaneously monotonic over every one of the k_lR -spaces.

THEOREM 3. Over a joint relation-space, $\psi(n+1) \leq n^{k_1 k_2 \cdots k_m} + 1$.

De Bruijn's Theorem is a special case of Theorem 3 in which all the coefficients are 2 and the set X consists of the real m-tuples. However his proof cannot be extended to prove Theorem 3, for his proof depends on the transitivity of his relations which is not assumed in Theorem 3.

However Theorem 3 may be proved as a trivial corollary to Theorem 2. Simply define $k_1k_2 \cdots k_m$ new relations over X by

$$x \ll_{h_1, \dots, h_m} y$$
 only if $x \subset_{h_l}^l y$ for all l .

Then X and the new relations form a $k_1k_2 \cdot \cdot \cdot k_mR$ -space. Use of Theorem 2 then completes the proof.

PRINCETON UNIVERSITY