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JOSEPH B. KRUSKAL, JR.

1. Introduction. Hidden in a paper by Erdös and Szekeres1 is an

intriguing result.

Basic Theorem. Every sequence S={xi} (i = l to «2+l) of real

numbers having (w2+l) terms possesses a (perhaps not strictly) mono-

tonic subsequence M = {#,,} (j = l to n+1) having (w+1) terms.

Furthermore (w2+l) is the smallest number for which this is true.

Briefly, this theorem states that a monotonie subsequence of any

desired length can be picked out from a sufficiently long sequence,

and gives the precise lengths. An elegant proof of this theorem (un-

published) which is due to Martin D. Kruskal is sketched here.

Notation. Let S and T denote sequences, and let M and N denote

monotonie sequences. Let S(p), etc., denote a sequence having p

terms. Let ^(re) denote the least integer p such that every S(p) con-

tains an M(n). In this notation we may restate the basic theorem

thus:

Basic Theorem. For sequences of real numbers, ^(re + 1) =re2+l.

To show that ^(re+1) =re2+l, it is sufficient to exhibit an S(n2)

which contains no Af(w+1). Such a sequence is the following:

re, •■ -, 1, 2«, •••,«+ 1, •• -, re2, •• -, re2 — re + 1.

To show that yp(n + l)^n2+l, assume the contrary and let n be the

least integer such that ^(«+1)>»2+1. Let 5(«2+l) be a sequence

which does not contain any M(n+1). Now define a majorant (minor-

ant) of 5 to be a term which is strictly greater (smaller) than all

terms following it in 5. The majorants (minorants) form a decreas-

ing (increasing) subsequence of S; hence there are at most n majorants

and « minorants. As the final term of 5 is necessarily both a majorant

and a minorant, there are at most (2w —1) extremants (majorants and

minorants). The last term of every M(n) contained in S must be an

extremant. Now delete from S all its extremants. The remainder S'

can contain no M(n), yet has at least [(«2+l) —(2re —1)] = [(« —l)2

+ l] terms. Hence yp(n)=}¡/(n —1 + 1) > (» —1)*+1. This contradicts

the definition of n and completes the proof.

Received by the editors April 7, 1952.
1 P. Erdös and G. Szekeres, A combinatorial theorem in geometry, Compositio

Mathematica vol. 2 (1935) p. 463. See the theorem on p. 467.
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2. First generalization—real vector spaces. In the following two

sections the concept of a monotonie sequence is generalized to se-

quences of vectors from a finite-dimensional real vector space and a

partial analogue of the Basic Theorem is obtained. (If S= {*,} is a

sequence from a vector space, the subscript still distinguishes terms

of the sequence, not components of a vector.)

Note that a sequence S = {x,■} of real numbers is monotonie if and

only if all the differences (ac,-+i —ac,-) lie (perhaps not strictly) to the

same side of 0 on the real line. This motivates:

Definition. A sequence S= {ac,} of terms from a finite-dimen-

sional real vector space is monotonie if there is a hyperplane H

through the origin such that the differences di = xi+i — Xi all lie in one

of the closed half-spaces determined by H.

This definition is further justified by:

Lemma 1. A sequence S of vectors is monotonie if and only if there is

a directed line L such that the perpendicular projections of the x{ on L

form an increasing sequence.

This lemma is easily proved by taking L and H to be perpendicular.

The direction of any such line L is called a direction of monotonicity

of S. In 1-space there are only two possible directions of monotonic-

ity: increasing and decreasing. In r-space the possible directions of

monotonicity correspond to the points on the (r — 1)-sphere.

Any sequence of two real numbers is monotonie. This generalizes

to:

Lemma 2. In r-space any sequence of (r+1) terms is monotonie.

This can easily be proved geometrically.

Notation. For convenience, let the function \p(n) which applies in

r-space be indicated by ^T(n).

Lemma 3. (a) If 5(re2+l) = {xi} is any sequence of (w2+l) terms in

r-space and L is any directed line in r-space, then S contains either a

subsequence monotonie in the direction of L or a subsequence monotonie

in the direction opposite to L. (b) ^v(re + l) ún2 + l.

Proof, (a) follows easily from Lemma 1 and the Basic Theorem;

(b) follows from (a). But (a) is much stronger than (b) because (a)

says "for any L • • • " while (b) says implicitly "there exists an L

such that. . . ." This suggests that actually ^r(w+l) is smaller than

(re2+l) in general.

What is the full generalization of the Basic Theorem to r-space?

In other words, what is the function ^r(«) ?
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Conjecture. yf/T(n+r)=rn+(n2 — n+l).
This conjecture is based solely on the following collection of facts.

Basic Theorem. ^i(re+1) = re+(re2 — re+1 ).

Lemma 2 (New Form). ^r(l+r)=r+(l-l + l).

Theorem 1. ^r(2+r)^2r+3 = 2r+(4-2 + l).

Lemma 4. For r = l and 2, the g of Theorem 1 becomes =.

The proof of Theorem 1 is long and occupies the next section. For

r = 1, Lemma 4 is trivial. To prove Lemma 4 for r = 2, it is sufficient to

exhibit a sequence of 6 vectors from 2-space which contains no

monotonie subsequence of 4 terms. That the following is such a se-

quence may be verified directly:

(2, -1), (3, 6), (-3, 12), (-3, -12), (3, -6), (2, 1).

3. Proof of Theorem 1. The basic tool in proving Theorem 1 is

Lemma 5. // S(p) ={xi} is a sequence in r-space, then at least one of

the following conditions is true:

(a) S is monotonie;

(b) there exist real numbers a¿>0 (i=l, ■ ■ • , p — 1) such that

Z«i¿» = 0, where di=Xi+1—Xi.

Proof. It is sufficient to show that the falsity of (b) implies

(a). Thus assume that 0 does not belong to the convex cone C

— { Z0^! all a>>0}. Then a well known theorem about convex sets

yields that there is a hyperplane H through 0 such that C (the topo-

logical closure of C) lies entirely in one of the closed half-spaces de-

termined by H. Since di is in C for all i, S(p) is monotonie, and the

proof is complete.

Comment. It is possible to modify (b) into a necessary and suffi-

cient condition for non-monotonicity. This condition might be useful

in further investigation of the function \¡rr(n).

Lemma 6 follows from Lemma 5.

Lemma 6. Let

S(p) ={x.}

be any sequence in r-space, and let

S'(q) -{*.,}

be a non-monolonic subsequence of it (of course l^Si<Si< • • • <sq

up). Then there exists a (p—l)-tuple of real numbers g= {y,} such
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that  Zt«^« = 0 where g satisfies the following "suitability conditions

with respect to (sx, • • • , sq) " :

{ti     = • • • = T.i-i = 0,

ÍT.1     = • • • = t,2_i > 0,

l7.„_, = • • • = yH_t > 0,

{y„    = ■ • ■ = 7p_i = 0.

Proof. By Lemma 5 there exist strictly positive a, (t'■ = 1,

q—1) such that

«-i
Z"<[*oi+l - xti] = 0.
i

Hence

i-i      r »i+i-i     -|

2w«.[   Z  ¿yj = 0.

Now define g= {y,} as follows:

{71     = •

Í7.,     =■

= 7.1-1 = 0,

= 7.J-1 = «1     > 0,

7..-1 = • • • = 7„_i = aq-i > 0,

{y„    = ■ ■ ■ = 7p-i = 0.

Clearly ¿^,y,d, = 0, and the proof is complete.

The structure of the (p — l)-tuple g = (yi, ■ • • , 7j>-i) can be repre-

sented by a q-block diagram. This is obtained by substituting in g

an "X" for each nonzero 7, and "o" for each zero 7, and an " = " for

each comma between two 7's of one "block" of equal nonzero 7's.

A g which is suitable with respect to (3, 5, 6, 9) and which has 10

components is represented by the following 10-dimensional 4-block

diagram: (o, o, X=X, X, X=X = X, o, o). Block diagrams will be

used extensively in the following arguments.

At this point it becomes necessary to consider the vectors of the

fundamental r-space as r-tuples of real numbers. We shall write

these r-tuples vertically and call them column vectors. We adopt

the specific notation d, = the column vector (b4,) as t = l, • • • , r,

where d, has its usual significance. The sequence {d,}, with j = 1 to
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p — 1, now becomes a matrix Z? = ||ôi|| in which t=l to r is the row

index and 5 = 1 to p — 1 is the column index. We shall let d'

(t = l, • • • , r) represent the rows of D.

We now put Lemma 6 into the proper form for actual use:

Lemma 7. // S(p)= {x,} is a sequence in r-space, which does not

contain any M(q), then for each (p— 1) -dimensional q-block diagram

there exists a (p — 1) -dimensional row vector g such that g is perpendicu-

lar to all the d* (t = 1, ■ • ■ , r) and such that g has the structure of

the given q-block diagram.

Proof. The g-block diagram corresponds to a subsequence S'(q)

= {*»,} of S. Apply Lemma 6 to S'(q) and rewrite the equation

T"/y«¿. = 0 as r equations Zy»^ = 0. These may be written gd' = 0

or "g is perpendicular to dl."    This completes the proof.

The last tool needed to prove Theorem 1 is

Lemma 8. // S(p) = {x,} is not monotonie, the vectors d' (t = l to r)

are linearly independent.

Proof. As 5 is not monotonie, the ds do not all lie on a common

hyperplane through the origin, hence span the whole (r-dimensional)

space of column vectors. Thus D has column-rank r, hence row-rank

r, which completes the proof.

Theorem 1 is proved indirectly. Assume contrary to the theorem

that S(2r+3) = {x,} contains no M(r + 2).

By Lemma 8, the r (2r + 2)-dimensional row vectors dl are linearly

independent. Now apply Lemma 7 to the following (r + 2) different

(2r + 2)-dimensional (r+2)-block diagrams, and label the resulting

g's as shown:

1    2    • • •    r+1  r+2  r+3   ■ ■ ■   2r+2

¡(Ï) (X, X, ■ ■ ■ ,   X,      Ö,       o,     • • ■ ,    o)

g(2) (o,  X, ■ - - ,   X,     X,      o,    ■■■ ,    o)

g(r+2) | (o,  o,   • • • ,   o,      X,     X,    ■■■ ,   X).

These g's are called the fundamental g's. Obviously the (r+2) funda-

mental g's are linearly independent. By Lemma 7 every fundamental

g is perpendicular to every d*. Therefore [g(l), • • • , g(r+2),

d1, • • • , dr] is a basis for the (2r+2)-space of row vectors. From this

follows

Lemma 9. Every g arising from application of Lemma 7 is a linear
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combination of the fundamental g's.

At this point the proof of Theorem 1 splits into two cases, depend-

ing on whether r is odd or even; the former case is simpler and will

be considered first.

Assume r is odd. Apply Lemma 7 to the following (r+1) different

(2r+2)-dimensional (r + 2)-block diagrams and label the resulting

g's as shown:

1    2    •••    r   r+1      r+2 r+3 r+4 •••   2r+2

¡Ô) (X, X,... ,X,   X   =   X,      o^       o,    • • • ,    o)

|(2) (o,  X,..- ,X,   X   =   X,     X,      o,    • • • ,    o)

g(r+l) I (o,  o,   • • • , o,     X   =   X,     X,     X,    ■■■ ,   X).

With the aid of Lemma 9 it is easy to see that

!(*) = «*)«(*) + v(k)g(k + 1)

for properly chosen C(k)>0 and r¡(k)>0. Introducing an obvious

notation for the components of the g's and the g's, we have

7,+i(A) = f(*)7r+i(*) + v(k)yr+i(k + 1)

= 7r+2(A) = t(k)yr+i(k) + v(k)yr+i(k + 1),

which yields that

[yr+1(k)   -  yr+2(k)]   =   -  e(*)[7r+l(* +   1)   -  7r+2(A +   1)]

where e(A) is a positive constant. Now

7r+1(l) - Tr+2(1) > 0

because the first term is positive and the second term is 0. The pre-

ceding equation now yields successively

7r+l(2)  - 7r+2(2)  < 0, 7r+l(3) - 7r+2(3) > 0,

and so forth. Since r is odd, we obtain

7r+i(r + 2) - Tr+2(r + 2) = - yr+2(r + 2) > 0

which is false. This completes the proof of Theorem 1 for odd values

of r.

Now assume that r is even. The following notation is introduced for

convenience :

ß(k)  = yT+x(k)  - 7r+S(*), ß'(k) S yr+1(k)  - 7r+3(¿).
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Using the same method as in the preceding paragraph, the following

inequalities are established (but without contradiction here) :

ß(k) > 0

ß(k) < 0

if k is odd ;

if k is even.

Now apply Lemma 7 to the following block diagrams and label the

resulting g's as shown :

1(1)

g(2)

g(r)

1    2 r    r+1 r+2 r+3  r+4 r+5 2r+2

(X, X, • • • , X,     X=X=X,        o,  o,

(o, X, • • • , X,      X= X= X,       X,      o,

o)

o)

(o, , JÍ. f Ji   - JÍ.   - JÍ.J J\.y A, X).

With the aid of Lemma 9 and the established inequalities for ß(k),

it is not difficult to show that

i(k) = t(k)g(k) + v(k)g(k + l) + e(k)g(k + 2)

where f(A), v(k), and 0(A) are positive constants. Translating these

vector equations into component equations, and using the equalities

among the components of the |'s, we have

yr+x(k) = r(A)7r+i(A) + v(k)yr+i(k + 1) + d(k)yT+i(k + 2)

= 7r+2(A) = r(*)7r+S(A) + ij(A)7r+2(A + 1) + e(k)yr+i(k + 2)

=  7V+3(¿) = f(A)7r+3(A) + v(k)yr+z(k + 1) + 6(k)yr+t(k + 2).

Subtract the second equation from the first, and then the third from

the first:

0 = KA)/3(A) + V(k)ß(k + 1) + B(k)ß(k + 2),

o = ï(W(k) + v(k)ß'(k + i) + e(k)ß'(k + 2).

From these equations it follows that

0(A + 1) ß(k + 2)

ß'(k + l) ß'(k + 2)

ß(k + 2) ß(k)

ß'(k + 2) ß'(k)

ß(k) ß(k + 1)

ß'(k) ß'(k + 1)

where e(k) is a properly chosen constant of proportionality.

f(A) = e(A)

v(k) = e(A)

0(A) - 6(A)
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Call the three determinants Z(A), H(A), and 0(A) respectively.

Since f(A), 77(A), and 0(A) are all positive, Z(A), H(A), and ©(A) must
all have the same sign as e(A). Furthermore, as Z(A) =@(k+l), all the

determinants have the same sign for all A (from 1 to r). To evaluate

the sign of ©(1) we use the already established inequalities for the ß's

and find the sign of the ß"s from direct examination of the block

diagrams of the g's. We see that

0(1) =
+     -

+     +
>0,

so that all the determinants are positive

Similarly, we find that

Z(l) =    ~    +
+     ?

For this tobe positive, "?" must be "-", sothatj3'(3) <0. Using this

result we see that

Z(2) =
+

For this to be positive, "?" must be " + ," so that ß'(4) >0. Similarly,

/3'(5)<0, )3'(6)>0, and so forth. Since r is even, ß'(r + 2)>0; how-

ever, direct examination of the block diagram shows that ß'(r + 2) <0.

This contradiction completes the proof of Theorem 1 for even values

of r, and hence the whole proof.

4. Second generalization—relation spaces. In the following sec-

tions we again generalize the Basic Theorem, but in a manner quite

different from that of the preceding sections.

The Basic Theorem is not in essence a statement about the real

number system. To see this, consider any set X with an arbitrary

binary relation C over it. (No assumptions are made about C ; for

example, it need not be transitive.) Let us say that S= {xi} is C-

monotonic ((£ -monotonie) if îc,C#«+i (*<C*>+i) f°r aH *• Call 5

monotonie if it is either C -monotonie or (J-monotonie. Then for

sequences over X it is still true that ^(re+1) á«2+l, and for a "gen-

eral" space X it is true that ^(re + 1) =w2+l. The inequality may be

proved exactly as before.

What is the meaning of the "2" in (w2+l)? The answer js simple:

it is the number of relations (C and Ct) of which at least one must

hold between any two elements. The "2" is generalized to a "A" in

Theorem 2.



272 J. B. KRUSKAL, JR. [April

Definition. A A-relation space (AP-space for short) consists of a

set X and A binary relations Ca over X (A=l, • • -, A) satisfying

one axiom: for every x, y in X, there is at least one A depending on

x and y such that xC.hy.

Definition. A sequence S= {x{} is C*-monotonic if x,Ca*,+i for

all *.
Definition. A sequence 5 is monotonie if there is at least one A

for which it is CA-monotonic.

Extended Basic Theorem. For sequences over a 2-relation space,

^(«+l)^w2+l. Furthermore, there are 2-relation spaces for which

t(n+l)=n2+l.

Theorem 2. For sequences over a kR-space,d/(n + l) ^nk+l. Further-

more, there are kR-spaces for which ^(re+1) =«* + l.

In the AP-space to be described ^(re+1) = w*+l. Let X consist of

all real polynomials in the variable £ of degree ^A —1. The relations

Ca are defined by

P(Q Ca g(0 if [*(£) - ?({)] has exactly degree (k - A).

(The zero polynomial is assigned degree 0.) It is trivial to show that

this is a AP-space, and the following S(nk) contains no M(n + 1):

%k-i +   £*-. + ... + i+h

**-» +   l*~2 + • • • + t + 2,

É*-1 +   S*-2 +•••+? + «,

|*-i +   £»-t + . . . + 2£ + i,

ik-i+   {»-t + . . . + 2% + re,

n^k-i + n^k-i +-\-n£ + n.

The proof2 that ^(«+l)^w*+l in a A-relation space rests on

Lemma 10 which (for real numbers) is stated in the paper by Erdös

and Szekeres.

* For the basic idea of this proof I am indebted to the referee, who suggested a

proof far simpler than the one originally contained in my paper. However, by using

Lemma 10, not originally in my paper and not known to the referee, I have further

simplified his proof.
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Lemma 10. // (X, Ci, C2) is a 2-relation space, then any sequence

S(pq + 1) either contains a Qi-monotonic subsequence M(p+1) or a

(Zi-monotonic subsequence M(q + 1).

This lemma may easily be proved in the same way as the Extended

Basic Theorem.

Now we proceed by an induction on A. If (X, Ci, • • • , Ct+i) is

a (A + l)-relation space, and 5(w*+1 + l) is a sequence over it, define

<3Ci and <K2 by

x <5Ci y, if x Ca y for any A from 1 to A,

x «2 y ii x Ct+i y.

Now (X, <5Ci, <3C2) is a 2-relation space. Hence by Lemma 10, 5 con-

tains either Mx(nk + 1) which is <3Ci-monotonic or Af2(re + 1) which is

<5C2-monotonic. In the latter case the proof is complete as Af2(re + 1)

is also Ct+i-monotonic. In the former case, let Mi denote the set of

elements in Afi(«*+1) and define C* over ilfi by

x Ç_h y ii x Ca y or if y precedes x in Mi(nk + 1).

Then (Afi.C1, ■ • • , C*) is a AP-space. Hence by the induction

hypothesis Afi(re* + 1) must contain an lf(re + l) which is C''-mono-

tonic for some A from 1 to A. But then M(n + 1) is CA-monotonic,

which completes the proof.

5. De Bruijn's Theorem—a generalization. In some unpublished

work N. G. de Bruijn has generalized the Basic Theorem to sequences

of w-tuples of real numbers. He defines such a sequence to be mono-

tonic if each component sequence is monotonie. (Thus there are 2m

"directions" of monotonicity.)

De Bruijn's Theorem. Over the space of m-tuples, \p(n + l)= w2m+1.

His proof is simply an íw-fold application of the Basic Theorem.

From 5(»2™ + l) pick a subsequence Si(w2m-I + 1) whose first com-

ponents are monotonie. From Si pick a subsequence S2(n2m~* + l)

whose second components are monotonie; and so forth. This even-

tually yields Sm(n + 1) which is monotonie. This shows that ^(re + 1)

g«2m + l; the opposite inequality is easily verified.

De Bruijn's Theorem inspires Theorem 3, which is at once a gen-

eralization of De Bruijn's Theorem and of Theorem 2.

Definition. A joint relation-space with coefficients Ai, • • • , Am

consists of m different relation-spaces over the same set X such that

the Ith space is a A¡P-space.
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The relations are denoted by C», where A = l, • • • , Aj and

1-1, • • • ,m.
Definition. A sequence is monotonie over a joint relation-space

if it is simultaneously monotonie over every one of the A|P-spaces.

Theorem 3. Over a joint relation-space, ¿-(n+l) á»****""**+l.

De Bruijn's Theorem is a special case of Theorem 3 in which all

the coefficients are 2 and the set X consists of the real reí-tupíes.

However his proof cannot be extended to prove Theorem 3, for his

proof depends on the transitivity of his relations which is not assumed

in Theorem 3.

However Theorem 3 may be proved as a trivial corollary to

Theorem 2. Simply define AiA2 • • • km new relations over X by

««A,....,Am y only if x Ca, y for all /.

Then X and the new relations form a AiA2 • • • AmP-space. Use of

Theorem 2 then completes the proof.
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