MONOTONIC SUBSEQUENCES
JOSEPH B. KRUSKAL, JR.

1. Introduction. Hidden in a paper by Erdds and Szekeres! is an
intriguing result.

Basic THEOREM. Every sequence S={x.} (i=1 to n*+1) of real
numbers having (n?+1) terms possesses a (perhaps not strictly) mono-
tonic subsequence M={x;} (j=1 to n+1) having (n-+1) terms.
Furthermore (n*+-1) is the smallest number for which this is true.

Briefly, this theorem states that a monotonic subsequence of any
desired length can be picked out from a sufficiently long sequence,
and gives the precise lengths. An elegant proof of this theorem (un-
published) which is due to Martin D. Kruskal is sketched here.

NoTATION. Let S and T denote sequences, and let M and N denote
monotonic sequences. Let S(p), etc., denote a sequence having p
terms. Let ¢(n) denote the least integer p such that every S(p) con-
tains an M(n). In this notation we may restate the basic theorem
thus:

Basic THEOREM. For sequences of real numbers, y(n+1) =n?+1.

To show that Y(n+1)=n2+1, it is sufficient to exhibit an S(n?)
which contains no M(n+1). Such a sequence is the following:

Mo 2 m L e = L

To show that Y(n+1) Sn?+1, assume the contrary and let # be the
least integer such that ¢(n+1) >n2+41. Let S(n®+1) be a sequence
which does not contain any M(n+1). Now define a majorant (minor-
ant) of S to be a term which is strictly greater (smaller) than all
terms following it in S. The majorants (minorants) form a decreas-
ing (increasing) subsequence of S; hence there are at most n majorants
and # minorants. As the final term of S is necessarily both a majorant
and a minorant, there are at most (2n—1) extremants (majorants and
minorants). The last term of every M(n) contained in S must be an
extremant. Now delete from S all its extremants. The remainder S’
can contain no M(n), yet has at least [(n?+1)—(2n—1)]=[(n—1)?
+1] terms. Hence y(n)=¢(n—1+1)>(n —1)2+1. This contradicts
the definition of # and completes the proof.
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1P, Erdss and G. Szekeres, A combinatorial theorem in geometry, Compositio
Mathematica vol. 2 (1935) p. 463. See the theorem on p. 467.
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2. First generalization—real vector spaces. In the following two
sections the concept of a monotonic sequence is generalized to se-
quences of vectors from a finite-dimensional real vector space and a
partial analogue of the Basic Theorem is obtained. (If S= {x;} isa
sequence from a vector space, the subscript still distinguishes terms
of the sequence, not components of a vector.)

Note that a sequence S= {x;} of real numbers is monotonic if and
only if all the differences (x;;1—x;) lie (perhaps not strictly) to the
same side of 0 on the real line. This motivates:

DEFINITION. A sequence S={x;} of terms from a finite-dimen-
sional real vector space is monotonic if there is a hyperplane H
through the origin such that the differences d;=x,;;—«; all lie in one
of the closed half-spaces determined by H.

This definition is further justified by:

LEMMA 1. A sequence S of vectors is monotonic if and only if there is
a directed line L such that the perpendicular projections of the x; on L
form an increasing sequence.

This lemma is easily proved by taking L and H to be perpendicular.

The direction of any such line L is called a direction of monotonicity
of S. In 1-space there are only two possible directions of monotonic-
ity: increasing and decreasing. In r-space the possible directions of
monotonicity correspond to the points on the (» —1)-sphere.

Any sequence of two real numbers is monotonic. This generalizes
to:

LEMMA 2. In r-space any sequence of (r+1) terms is monotonic.

This can easily be proved geometrically.
NotaTION. For convenience, let the function y¥(z#) which applies in
r-space be indicated by y.(n).

LeMMA 3. (a) If S(n2+1) = {x:} is any sequence of (n*+1) terms in
r-space and L is any directed line in r-space, then S contains either a
subsequence monotonic in the direction of L or a subsequence monotonic
in the direction opposite to L. (b) Y.(n+1) <n2+1.

Proor. (a) follows easily from Lemma 1 and the Basic Theorem;
(b) follows from (a). But (a) is much stronger than (b) because (a)
says “for any L - - - ” while (b) says implicitly “there exists an L
such that. . . .” This suggests that actually ¢,(n+1) is smaller than
(n2+1) in general.

What is the full generalization of the Basic Theorem to r-space?
In other words, what is the function y,(n)?
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CONJECTURE. ¥,(n+7)=rn+(n*—n-+1).
This conjecture is based solely on the following collection of facts.

Basic THEOREM. Yy(n+1)=n+m2—n+1).

LEMMA 2 (New Form). y,(1+r)=r+(1—-141).
THEOREM 1. ¢,(2+7)S2r4+3=2r+(4—2+1).

LEMMA 4. For r=1 and 2, the < of Theorem 1 becomes =.

The proof of Theorem 1 is long and occupies the next section. For
r=1, Lemma 4 is trivial. To prove Lemma 4 for r =2, it is sufficient to
exhibit a sequence of 6 vectors from 2-space which contains no
monotonic subsequence of 4 terms. That the following is such a se-
quence may be verified directly:

(29 _l)v (3- 6)» (—3’ 12)1 (_3» _12)1 (3v —6)v (21 1)-
3. Proof of Theorem 1. The basic tool in proving Theorem 1 is

LeEMMA 5. If S(p) = {x.} is a sequence in r-space, then at least one of
the following conditions is true:

(a) S is monotonic;

(b) there exist real mumbers a;>0 (i=1,--.,p—1) such that
Ea;d,'=0, where d,-Ex,-+1—x.-.

Proor. It is sufficient to show that the falsity of (b) implies
(a). Thus assume that 0 does not belong to the convex cone C
={ Y aud|all ;>0}. Then a well known theorem about convex sets
yields that there is a hyperplane H through 0 such that C (the topo-
logical closure of C) lies entirely in one of the closed half-spaces de-
termined by H. Since d; is in C for all 4, S(p) is monotonic, and the
proof is complete.

CoMMENT. It is possible to modify (b) into a necessary and suffi-
cient condition for non-monotonicity. This condition might be useful
in further investigation of the function y,(n).

Lemma 6 follows from Lemma 5.

LemMMA 6. Let
S(#) = {=}
be any sequence in r-space, and let
S'(g) = {=.}

be a non-monotonic subsequence of it (of course 1 =51<s3< -+ - <s4
<9). Then there exists a (p—1)-tuple of real numbers g= {v:} such
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that D v.d,=0 where g satisfies the following “suitability conditions
with respect to (s1, - - -, 5)”:

(i = =va=0,
j‘)‘n = = Ye-1 > 0,
.......... ,
l')'.,_I = Yo, > 0,
Ve = =791 =0

Proor. By Lemma § there exist strictly positive a; (1=1, - - -,
g¢—1) such that

¢—1
Z a"[x'€+l - x‘i] = 0.
1
Hence
1 si+1—~1
L,a,-[ > d;] =0,
1 L

Now define g= {v.} as follows:

fnn = =20 =0,
Yoo = =Ypa=ar >0,

.............. ,
‘Y‘q—l == 'qu—l = aq—l > 0’
(Ve =+ " =" =0.

Clearly ) v.d,=0, and the proof is complete.

The structure of the (p—1)-tuple g=(v1, * * + , ¥p—1) can be repre-
sented by a g-block diagram. This is obtained by substituting in g
an “X” for each nonzero v, and “o” for each zero v, and an =" for
each comma between two ¥’s of one “block” of equal nonzero v’s.
A g which is suitable with respect to (3, 5, 6, 9) and which has 10
components is represented by the following 10-dimensional 4-block
diagram: (0, 0, X=X, X, X=X=X, o, o). Block diagrams will be
used extensively in the following arguments.

At this point it becomes necessary to consider the vectors of the
fundamental r-space as r-tuples of real numbers. We shall write
these r-tuples vertically and call them column vectors. We adopt
the specific notation d,=the column vector (8}) as t=1,---,7,
where d, has its usual significance. The sequence {d,}, with s=1 to
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p—1, now becomes a matrix D=||8]|| in which t=1 to r is the row
index and s=1 to p—1 is the column index. We shall let d*
(t=1, - - -, r) represent the rows of D.

We now put Lemma 6 into the proper form for actual use:

LEmMA 7. If S(p)= {x.} is a sequence in r-space, which does not
contain any M(q), then for each (p—1)-dimensional g-block diagram
there exists a (p—1)-dimensional row vector g such that g is perpendicu-
lar to all the d* (t=1, - - -, r) and such that g has the structure of
the given g-block diagram.

Proor. The g¢-block diagram corresponds to a subsequence S’(g)
={x.,,} of S. Apply Lemma 6 to S’(¢) and rewrite the equation
Z'y.d.=0 as r equations ) v,0:=0. These may be written g-d‘=0
or “g is perpendicular to dt.” This completes the proof.

The last tool needed to prove Theorem 1 is

LEMmMA 8. If S(p) = {x.} is not monotonic, the vectors d* (t=1 to r)
are linearly independent.

ProOF. As S is not monotonic, the d, do not all lie on a common
hyperplane through the origin, hence span the whole (r-dimensional)
space of column vectors. Thus D has column-rank 7, hence row-rank
r, which completes the proof.

Theorem 1 is proved indirectly. Assume contrary to the theorem
that S(2r+3) = {«,} contains no M(r+2).

By Lemma 8, the 7 (2r+2)-dimensional row vectors d* are linearly
independent. Now apply Lemma 7 to the following (r+2) different
(2r+42)-dimensional (r+2)-block diagrams, and label the resulting
g's as shown:

1 2 -« r41 742 r43 -+ 2r42
3(1) (Xy X:"' ’ Xy o, 0, -+, 0)
g(2) (0) Xv T X! Xr 0, =*-°*, O)
g(f+2) (0, 0o +*, O Xv X: ] X)-

These g's are called the fundamental g's. Obviously the (r+2) funda-
mental g’s are linearly independent. By Lemma 7 every fundamental

g is perpendicular to every d!. Therefore [g(1), - - -, g(r+2),
d!, - - -, dr] is a basis for the (2r42)-space of row vectors. From this
follows

LeEmMA 9. Every g arising from application of Lemma 7 is a linear
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combination of the fundamental g's.

At this point the proof of Theorem 1 splits into two cases, depend-
ing on whether 7 is odd or even; the former case is simpler and will
be considered first.

Assume r is odd. Apply Lemma 7 to the following (r+41) different
(2r+2)-dimensional (r+2)-block diagrams and label the resulting
g's as shown:

12 «+o 7 r+1 742 743 r4+4 -+ 2r42
g(l) (X, X’-.- ,’X, X = X, o, o, N 0)
2(2) (o, X,--+,X, X =X, X, o --+, 0
gr+1 1 (o, 0, --+,0, X = X, X, X, , X)

With the aid of Lemma 9 it is easy to see that
g(k) = ¢(k)g(k) + n(k)g(k + 1)

for properly chosen {(k)>0 and 5(k)>0. Introducing an obvious
notation for the components of the g’s and the g’s, we have

Vr+1(k) = () vr41(R) + n(B)vea(k + 1)
= Yr42(k) = F(R)vr42(R) + n(k)yrs2(k + 1),
which yields that
[reea(B) = vri2(B) ] = — e(B) [yraa(k + 1) — yrsa(k + 1)]
where e(k) is a positive constant. Now
Yr41(1) = ¥r42(1) > 0

because the first term is positive and the second term is 0. The pre-
ceding equation now yields successively

Yr41(2) — 7r42(2) <0, Yr41(3) — ¥r42(3) > 0,

and so forth. Since 7 is odd, we obtain
Yrir(r + 2) — Yepo(r +2) = — vry2(r +2) > 0

which is false. This completes the proof of Theorem 1 for odd values
of r.

Now assume that 7 is even. The following notation is introduced for
convenience:

B(k) = vr41(k) — vri2(k), B'(k) = vrs1(R) — Yria(k).
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Using the same method as in the preceding paragraph, the following
inequalities are established (but without contradiction here):

B(k) >0 if £ is odd;
B(k) <0 if k is even.

Now apply Lemma 7 to the following block diagrams and label the
resulting g's as shown:

12 ror+1 742 143 r+4 745 - 2042
X Xx,---,X, X=X=X, 0, o, *++, 0)
g2 (o, X,---,X, X=X=X, X, o, *++, 0)
gnl(, o ---,X, X=X=X, X, X, ---, X).

With the aid of Lemma 9 and the established inequalities for 8(k),
it is not difficult to show that
g(k) = t(k)g(k) + n(B)g(k + 1) + 0(k)g(k + 2)

where {(%), n(k), and 8(k) are positive constants. Translating these
vector equations into component equations, and using the equalities
among the components of the g's, we have

Yes1(E) = E(R)vrs1(R) + 1(B)¥rsa(k + 1) + 0(B)vria(k + 2)
= Yrp2(k) = $(B)vrs2(R) + n(B)vrs2(k + 1) + 68(k)vrsa(k + 2)
= Yr4a(B) = F(R)vrs3(R) + n(B)yrss(k + 1) + 0(B)yr4a(k + 2).

Subtract the second equation from the first, and then the third from
the first:

0 = {(B)B(E) + n(k)B(k + 1) + 6(R)B(k + 2),
0 = {(R)B'(k) + n(E)B'(k + 1) + 6(R)B'(k + 2).

From these equations it follows that

Bk+1) B(k+2)
k =€k )
(B =B gy pa+2
Bk+2) B

k) = e(k

=B | oty g I
8K BE+1)
BB B+ 1)

where €(k) is a properly chosen constant of proportionality.

8(k) = (k)
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Call the three determinants Z(k), H(k), and ©(k) respectively.
Since {(k), n(k), and 0(k) are all positive, Z(k), H(k), and ©(k) must
all have the same sign as e(k). Furthermore, as Z(k) =0(k+1), all the
determinants have the same sign for all k2 (from 1 to r). To evaluate
the sign of (1) we use the already established inequalities for the 8’s
and find the sign of the §’’s from direct examination of the block
diagrams of the g's. We see that

+ —_
o
+ +
so that all the determinants are positive.
Similarly, we find that

0(1) =

- +
+ 7

For this to be positive, “?” must be “—”, so that 8’(3) <0. Using this
result we see that

Z(1) =

+ —_
- 7

For this to be positive, “?” must be “+,” so that 8/(4) >0. Similarly,
B’(5) <0, B’(6) >0, and so forth. Since 7 is even, 8’(r+2)>0; how-
ever, direct examination of the block diagram shows that 8/(r+2) <0.
This contradiction completes the proof of Theorem 1 for even values
of r, and hence the whole proof.

Z(2) =

4. Second generalization—relation spaces. In the following sec-
tions we again generalize the Basic Theorem, but in a manner quite
different from that of the preceding sections.

The Basic Theorem is not in essence a statement about the real
number system. To see this, consider any set X with an arbitrary
binary relation C over it. (No assumptions are made about C; for
example, it need not be transitive.) Let us say that S={x;} is C-
monotonic ({-monotonic) if x;Cxix (x:(x:) for all 7. Call S
monotonic if it is either C-monotonic or (-monotonic. Then for
sequences over X it is still true that y(n+41) =%2+1, and for a “gen-
eral” space X it is true that ¢ (n+1) =n2+41. The inequality may be
proved exactly as before.

What is the meaning of the “2” in (n2+41)? The answer # simple:
it is the number of relations (C and () of which at least one must
hold between any two elements. The “2” is generalized to a “k” in
Theorem 2.
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DEFINITION. A k-relation space (kR-space for short) consists of a
set X and k binary relations Cs over X (h=1, - - -, k) satisfying
one axiom: for every x, y in X, there is at least one # depending on
x and y such that xCay.

DEFINITION. A sequence S= {x;} is Cs-monotonic if x;Ca%is1 for
all 7.

DEFINITION. A sequence S is monotonic if there is at least one &
for which it is Cs-monotonic.

EXTENDED BAsic THEOREM. For sequences over a 2-relation space,
Y(n+1) Sn?+1. Furthermore, there are 2-relation spaces for which
Y(n+1)=n2+1.

THEOREM 2. For sequences over a kR-space,¥(n+1) <n*4-1. Further-
more, there are kR-spaces for which Yy(n-+1) =n*41.

In the kR-space to be described ¢(n+1) =n*+41. Let X consist of
all real polynomials in the variable ¢ of degree <k—1. The relations
C are defined by

P(8) Chg(¥) if [p(£) — q(£)] has exactly degree (k — k).

(The zero polynomial is assigned degree 0.) It is trivial to show that
this is a kR-space, and the following S(n*) contains no M(n+1):

S LS R
Ek—l‘*' f""2++$+2,
gl 24 o 4 B4,
g1 4 g2 4 .. 2841,

..............

..............

..............

nEt - nkt - o+ om

The proof? that Y(n+1)Sn*+1 in a k-relation space rests on
Lemma 10 which (for real numbers) is stated in the paper by Erdés
and Szekeres.

2 For the basic idea of this proof I am indebted to the referee, who suggested a
proof far simpler than the one originally contained in my paper. However, by using
Lemma 10, not originally in my paper and not known to the referee, I have further
simplified his proof.
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LEMMA 10. If (X, C,, Ca2) s a 2-relation space, then any sequence
S(pg+1) either contains a Ci-monotonic subsequence M(p+1) or a
Co-monotonic subsequence M(qg+1).

This lemma may easily be proved in the same way as the Extended
Basic Theorem.

Now we proceed by an induction on k. If (X, Cy, : + +, Cisr) is
a (k+1)-relation space, and S(n*t1+41) is a sequence over it, define
& and <, by

x K1y, if x Cy y for any k from 1 to &,
r <Lz y if x Ck+1 y.

Now (X, &, <) is a 2-relation space. Hence by Lemma 10, .S con-
tains either M;(n*+1) which is «;-monotonic or My(n+1) which is
<«-monotonic. In the latter case the proof is complete as Ma(n+1)
is also Ciq1-monotonic. In the former case, let M; denote the set of
elements in M;(n*41) and define C* over M, by

xChy if x Cy y orif y precedes x in M, (n* + 1).

Then (M,,CY, - - -, C¥) is a kR-space. Hence by the induction
hypothesis M;(n*+1) must contain an M(n+1) which is C*-mono-
tonic for some k from 1 to k. But then M(n+1) is Cs-monotonic,
which completes the proof.

5. De Bruijn’s Theorem—a generalization. In some unpublished
work N. G. de Bruijn has generalized the Basic Theorem to sequences
of m-tuples of real numbers. He defines such a sequence to be mono-
tonic if each component sequence is monotonic. (Thus there are 2™
“directions” of monotonicity.)

DE BruiyN’s THEOREM. Over the space of m-tuples, Y (n+1) =n2"+1.

His proof is simply an m-fold application of the Basic Theorem.
From S(n?"+1) pick a subsequence S;(n?" '41) whose first com-
ponents are monotonic. From S; pick a subsequence S,(n2""+1)
whose second components are monotonic; and so forth. This even-
tually yields Sn.(n+1) which is monotonic. This shows that Yy(n+1)
<n?"+1; the opposite inequality is easily verified.

De Bruijn’s Theorem inspires Theorem 3, which is at once a gen-
eralization of De Bruijn's Theorem and of Theorem 2.

DEFINITION. A joint relation-space with coefficients %y, - - -, km
consists of m different relation-spaces over the same set X such that
the /th space is a k;R-space.
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The relations are denoted by Cj}, where k=1, - - -,k and
I=1,..-,m.

DEFINITION. A sequence is monotonic over a joint relation-space
if it is simultaneously monotonic over every one of the k;R-spaces.

THEOREM 3. Over a joint relation-space, Y(n—+1) Snkrks: - km -1,

De Bruijn’s Theorem is a special case of Theorem 3 in which all
the coefficients are 2 and the set X consists of the real m-tuples.
However his proof cannot be extended to prove Theorem 3, for his
proof depends on the transitivity of his relations which is not assumed
in Theorem 3.

However Theorem 3 may be proved as a trivial corollary to
Theorem 2. Simply define k& - - - km new relations over X by

2 KLy, hy ¥ only if # C;l., y for all I

Then X and the new relations form a kiks - - - knR-space. Use of
Theorem 2 then completes the proof.
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