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Let us put

00

(1) F(s) = 2>„exp(-Xnj)
n=l

(s = o- + it, 0 g Xi < X2 < • • • < X„-» + oo).

When we vary coefficients {a„}, this change has some influence upon

singularities. Concerning this problem, O. Szász [l, p. 107] has

proved the next theorem, which is a generalization of Hurwitz-

Pólya's theorem [2, p. 36]:

O. SzÁsz's Theorem. Let (1) have the finite simple convergence-

abscissa a,. If limn,oo log n/\n = 0, then there exists a sequence {e„}

(en= ±1) such that 2^1n-i an«n exp (— X„s) has 0=0, as the natural

boundary.

In this note, we shall prove the following theorem of the same type:

Theorem. Let (1) have the finite simple convergence-abscissa a,.

If lim»^« log n/X„ = 0, then there exists a Dirichlet series X/"-i &»

exp (— Xns) having o- = o-, as the natural boundary such that

(a) |6B|=|o„| (« = 1,2, • • • ),andlimn^ | arg (an) - arg (bn) \ = 0

or

(b) arg (6„)=arg (a„) (» = 1, 2, ■ ■ ■), and lim«..«, \bn/a„\ =1.

Proof. On account of lim,,..«, log ra/X„ = 0, and G. Valiron's theorem

[3, p. 4], we get

(2) o-, = lim sup 1/X„- log I an \.
n—♦«

Therefore we can select a subsequence {Xni} such that

(i) a, = lim l/X„,.-log I <!„,. I,

(3)
(ii) lim inf (X„i+i — X„,) > 0, lim t'/X„, = 0.

Again    by    G.    Valiron's    theorem    and    (3)    (i),    Gi(s;   d,   a)
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= Xi-i a»( exP (aöAnjXexp (— \nis) has the simple convergence-

abscissa <r„ where (i) 6 is a real constant, (ii) a is a constant de-

termined later. Hence Gi(s) = ]C«(£k) °» exP (—X„s) is simply con-

vergent at least for <r><7,. Now let us put

(4) F(s;0,a) =Gi(s;B,a)+Gi(s),

which is evidently simply convergent at least for <r>a,.

Denote by E(0, a) the set of regular points of F(s; 0, a) on a- = cr„

which is clearly an open set. Then we can prove that

(5) £(0i, a) r\ E(8i, a) = 0 for 0X ̂  02.

In fact, if there should exist a point f on a = a, such that ££F(0i, a)

(~\E(0i, a) 7*0, then F(s; 0lt a) — F(s; 02, a) would be regular at s = £.

On the other hand, since

F(s; 0i, a) - F(s; 02, a)

00

= £ ffni{exp (adx/Ki) - exp (a02/X„,.)} exp (-X„,s)
,'-i

00

= 2Z ani0(l/Xn<) exp (-Xn<s),

taking account of (3), G. Valiron's theorem, and Carlson-Landau's

theorem [3, pp. 140-141 ], F(s; 0i, a)—F(s; 02, a) has the simple con-

vergence-abscissa <r„ and furthermore it has ar = a, as the natural

boundary, which contradicts the regularity at s = £. Hence, (5) holds.

If E(0, a) ?¿0 should hold for all 0, O^0^y (y a fixed constant),

then, by (5), {F(s; 0, a)} is at most of enumerable power, which

contradicts the power of continuum of [F(s; 0, a)}. Hence, for at

least one 0', E(0', a) =0 holds. If we put a = (-l)1'2(-l), then (a)

((b)) is valid, q.e.d.
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