
A NOTE ON THE RECIPROCAL OF A FOURIER SERIES

A. EDREI AND G. SZEGÖ

Introduction. Let f{ff) be a real function which belongs to the class

L(0, 2tt) and let

(1) E a^>

be its complex Fourier series.

If [f(ß)]~l also belongs to L(0, 2ir), we may consider its Fourier

series

(2)

+ 00

and investigate the connection between the Fourier coefficients of

W)and \fW\-1-
Formal multiplication of (1) and (2) yields the infinite system

+00

(3)     £ a„_A = So,, (p = 0, ±1, ±2, • • • ; 500 = 1; S0ß = 0 if p ■£ 0),

which it is natural to attempt to solve by the "method of sections"

(that is the "méthode des réduites" discussed by F. Riesz [l, p. 2]).

Let

l2n+l  —

00 0-1        0-2

a\      ao      a-i

02 01 00

• • 0-Sn

• - 0-2n+l

• *  0-2n+2

02n        02n-l   02n-2 00

and denote by Ain+i(j, k) the minor obtained by deleting the

(« + l+/)th row and the («+l+ife)th column of Ain+i. The formal

method just mentioned will be justified as soon as we establish the

relation1

(4)
-42n+l(/i   k)

lim(-l)'-*      ^/J'      =&*.,-■
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1 Strictly speaking, the "méthode des réduites" requires only the proof of the spe-

cial casej = 0, of the relation (4).
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Indeed, we prove the following

Theorem. Let f{6) be a real function defined in the interval (0, 27r),

and assume

(i)    0 1/(9); (ii)    MEL; (iii)     [/(i)]"1 G ¿.

If (1) and (2) denote the respective complex Fourier series of f{6)

and |/(ö) ]_1, we have

(5) ¿a„+i > 0,

and the relation (4) is true for all fixed2 integral values of j and k.

The inequality (5) is not new (cf. [3, p. 189]). It is easily proved

under the assumptions

Oá/(0);     /(«)6i;       f   f{e)de>o.

The relation (4) was noticed and proved by Edrei under the assump-

tions3

(I) 0 á M Ú M < + oo ;        (II) f{6) G L;        (III)  [/(0)]-1 G V;

his proof is given in §2.

The final form of the result is due to Szegö; his proof is given in §3

1. Formal observations. We consider the trigonometric polynomial

00 3_i    a_2   • • • a_fc_„+i eii(i+n>    o_^»_i o_*_„_2 • • • o_2„

01 Oo      0_l    • • • 0_/fc_n+2 e«'9<frh»-» a_*-»     o_*_„_i • ■ • o_2»+i

02 Ol Oo        • • ■  0_fc_n+J)  efik+n-S)   O^n+i  0_Jfc_„      • • •  <J_2n+2<fc„+i(0; *) =-
•<^2n+l

I »2n  02n_l  02«_2 " ■ •  O-jt+^l  e»9(*-»>       O-Jt^n-l 0_fc1.„_2 ■

and the determinant

A2„+1(X; k)

00 0-1      0-2     - - -  0_t_n+l  O-t-n+X       O-t-n-l  0_i_n_2 " " ■  0_2n

01 Oo 0-1     • • •  0_*_n+2  0_it_n+X+l  0_Jb_„       0_*_n_l • • •  0_2„+l

02 Ol        Oo       • • • 0_Jfc_n+J 0_jfc_n+X+2 O-Jfe-n+l 0_fc_n     " • ' 0_2n+2

Ojn  02n-l  02n-2 ■ " "  0_fc,.„+l  O-i+n+X       O-fc+n-l  0_i+n-2 • • ■  Oo

1 The proof of this theorem, to be given in §3, furnishes in fact more, namely the

relation (4) with the following interpretation: the numbers j and k are not necessarily

fixed; however, they depend on n in such a way that j—k = const, and n— \j\ —» «>.

* Even in this incomplete form, the result lends itself to applications. One of the

authors of this paper uses it as an essential tool in the proof which he recently obtained

of a conjecture of Schoenberg on the generating function of a totally positive se-

quence (cf. [2, p. 362]).
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Obviously, for — k — n^X^ — k+n,

(1.1) — f    02n+l(0; k)e™dO = (
27T./ 0

and for any integer X,

1   f2r A2n+i(X; k)
(1.2) - I    *2n+i(ff; k)<r™f(o)de =    "+v       •

2ir J o -4211+1

Noticing that

Ajn+i(X; ¿)=0 for X=-»+£, -n+k+l, • • • , -2, -1,

(1.3) A2n+i(0; k)=Ain+i,

A2n+i(X;*)=0        for X=l, 2, 3, • • • , n+k,

we see that (1.2) implies

1     r2' ■ , ¿2n+l(¿,  *)
(1.4) - I     102„+i(0; É) |2/(0)<w = -——- •

L-kJo -4211+1

Now

l  r" j l - f(ß)**.+i(ßi *) I2  M
0

¿irJn /(*)

= bo + ^\f '/(*) I ¿W; ¿) I2«

4>2n+t(0; *)d»
0

- f    <f>2»+i(0; k)dd\ ,

which, in view of (1.1) and (1.4), yields

(1.5) — f     I «2n+i(0; k) \*f(6)d0 Ú bo.
2tJo

2. Study of a special case. If we replace the assumptions (i), (ii),

and (iii) of the theorem by the more restrictive conditions (I), (II),

and (III), we may apply Parseval's theorem to the left-hand sides of

(1.1) and (1.2). We obtain respectively,

(2.1)    ~ C {*2„+i(*; k)*»m\ -¿r* = 2 A2"+l(7 X: V,
2irJ0 f(0) __„ ALj.1iin+l
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and

(2.2) - I      | *2B+1(0; k) \T(O)d0 = £ -+y   "    ■

By assumption (I),

I 4>2„+i(0; ¿) IVWiW ̂  M I      | tf,2n+1(0; A) |2/(0)d0,
o Jo

so that (2.2) and (1.5) imply

»=—«o -42n+l

Now (2.1), (1.1), and (1.3) yield

ilftH-iO', A)       .          -ÍÍ"1 <W(' -/+£;£)
(_l)j *__^-bt-j =   2-,   -]-o-,

-djn+l F—oo -<4.2n-t-l

(2.4) +S   A2n+1{v - i + k; k)
+     Zj- &-,.

In view of (2.3) and of the convergence of   Sl^l 2> tne right-hand

side of (2.4) may be estimated by Schwarz's inequality; we find

i    í\í-í A*+tà *)      ,.     I
^2»+l I

/    -n+i-1 <o \   1/2

^ {Mb0yi*\   E   |6-,|2+ E   IM7   •
V   " y=—oo i-=n+i+l /

Letting n—»oo, we obtain (4).

3. Proof of the theorem. In view of (1.1), our theorem may be

proved by showing that the polynomials <f>2n+i{6; k) converge weakly

to |/(0) I-1, that is

(3.1) lim   f     L2n+l{0; k) - ~—\e**d$ = 0
„->«>  Jo        V. f{6) J

(X = 0, ±1, ±2, •••)•

Let h{0) be an arbitrary trigonometric polynomial. The obvious

identity

4»2„+l  -   1// =   (/**»+!  -   1)* +  (1   -   ¥)<t>2n+l + {h~   1//)

implies



f(6)
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(3.2)  g I f    {/(e)^„+i(0; k) - 1 }*(«)«*•<»I
IJ 0    \

+ f     I 1 - h(8)f(6) I I 02„+i(0; k)\d»+ f '\h(8)
Jo "0

By Schwarz's inequality

( r** \h(e)f(d)-i\      1     j 2

I Jo        (/(0))1'2      (/W)1'2  /

(3.3)

Jo /(0)

and, as a further consequence of Schwarz's inequality and (1.5), we

obtain

U'2* I 1 - h{6)f{B) I , .     ) 2

(3'4) ±2«boÇ\1-mm\\e.

We now choose h(6) so that

" 11 - *W/W 1» jn

2*   I *(*)/(*) - 1 I2

/ [*(*)] = f
•/ 0 /(»)

is small.

Let t\ and e2 be positive parameters and consider the following

three sets of points (of the interval [O, 27r]):

£1 = E(f(ß) ^ ei);      £2 = Efa < f(6) Z «T*);      E, = £(*' < /(<?)).

Moreover, denote by F(6) a function which is equal to [/(Ö)]-1 on

£2 and vanishes on both £1 and £3. Then

o á F(6) < er1,

so that, given í(>0), there exists a trigonometric polynomial4 hiß):

* The FejeY-means of the Fourier series of F(8) satisfy the conditions imposed on

h(6).
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+1 _

h{6) =  £ h^> (A_ = hr),

such that

(3.5) f * {F{6) - h{8)}*d0 < *,
J o

(3.6) 0 ^ h{6) ̂  el1.

Using (3.5), (3.6), the mean-value theorem, and the definitions of

Eu Ei, and E3, we obtain

r   {1 - h{d)f{6)}2 r . i-i

J i, /(0) «/ ä,

/• {i - A(0)/(0)}2       r   (¡»     r
I     l " ddi  \    —-+)    h\d)f{6)d8

(3.7) =  f  -£?- +  f   {F(0) - *(0)}V(0)*
J «l /W J EX

/•   de-h ei6,
ex m

r   {1 - *(«)/(»)}2 r    ¿0        f
j   J-KmJi des I   -+|   h\e)j{e)de
ht M J.,M       Je,

f   f{e)de.
J Ei

, = «"»; *(<) =   j J   /(0)doj      ,

^   2-ÎTÎ2 + «1

Taking

the inequalities (3.7) yield

j[h{8)} ú (i+2T)61'2+eie + r —- + {r /(ff)«»!
•J «i fyy)       \J E, )

1/2

Hence, given S( >0), it is always possible to determine a trigonometric

polynomial h{6), of degree /(Ô), such that

(3.8) /[A(0)]<5.

In view of (1.2) and (1.3) the first term of the right-hand side of (3.2)

vanishes as soon as

»£/(«) +1 * + x|,
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so that the relation (3.1) is an obvious consequence of (3.2), (3.3),

(3.4), and (3.8).
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A NEUMANN SERIES FOR THE PRODUCT OF TWO
WHITTAKER FUNCTIONS1

PETER HENRICI

1. Introduction. Several series representations in terms of Bessel

functions have been given recently for a single Whittaker function

of the first kind (usually denoted by MK,?(z)) by various authors.2

None of these series is very easy to survey, because their coefficients

are never given explicitly but only either by means of a generating

function (as in [4]) or by recurrence formulae (as in [l] and [ó]).

In the present paper a generalized Neumann series for the product of

two Whittaker functions of the first kind with common indices but

different arguments is given, in which the coefficients are formed by

certain terminating generalized hypergeometric series and by Gegen-

bauer polynomials. The expansion obtained includes also the case of a

single Whittaker function, which is of special interest in connection

with the theory of Coulomb waves.3 Our method of proof uses only

the simplest properties of the function M,tlt(z) and is especially

much more elementary than the methods of [4]. All symbols used are

those of Magnus-Oberhettinger [7], with exception of that for the

generalized hypergeometric series, for which we use Bailey's [2] no-

tation.

2. Theorem. For arbitrary complex values or r, 6, k, and 4/i

t^ — I, —2, • ■ ■ the following expansion holds:

Received by the editors May 26, 1952.

1 This paper was prepared in part under a National Bureau of Standards Contract

with The American University.

* Abramowitz [l], Buchholz [4], Karlin [6], H. Schmidt [4], Tricomi [4].

8 Cf. [l ] and the literature quoted there. The function fo,(ij, p) considered in [l ]

is identical with M<mL+m(.2ip) ' (2ip)-(i+1>.


