
302 PARRY MOON AND DOMINA EBERLE SPENCER [April

(9.7) *y* = 0, /+A<re-1.

Hence in the presence of (9.7) equations (9.5) and (9.6) are equivalent.
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RECENT INVESTIGATIONS OF THE SEPARATION
OF LAPLACE'S EQUATION

PARRY MOON AND DOMINA EBERLE SPENCER

Introduction. Two independent studies [l; 2] have been made

recently of separability conditions for the Laplace equation. Since

the results of the two investigations are different, and even the

meaning of "separability" is not identical, it seems pertinent to com-

pare the two. We shall limit ourselves to euclidean 3-space and

curvilinear coordinate systems (m1, m2, m3).

The meaning of "separability." According to [l], separation is of

two kinds:

(a) If the assumption
3

* = n WM
»-1

permits the separation of the partial differential equation into three

ordinary differential equations, the equation is said to be simply

separable.

(b) If the assumption

1 3
<t> = ■——— n #*(«*)

R(u\ u2, «») ¿J

permits the separation of the partial differential equation into three

ordinary differential equations, and if R?*const., the equation is

said to be R-separable.

These definitions seem to be in agreement with the usual meaning

of the word "separability." Levinson, Bogert, and Redheffer  [2],
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however, choose a different meaning. This choice is, of course, per-

fectly legitimate ; but unless the reader is aware of the difference, he

may misinterpret the LBR theorems.

Instead of setting up the general criteria by which the Laplace

equation in re variables falls into » separated equations, LBR split

off one part at a time. Conditions are first determined by which

terms in m3 are separated; after which, additional restrictions are

imposed so that u1 can be separated from m2.

It is customary to classify coordinate systems (with respect to

solution of Laplace's equation) as separable systems and nonseparable

systems. Redheffer [3], on the other hand, classifies coordinate sys-

tems as

(i) Those in which Laplace's equation can be split apart, one piece

at a time. The equation is then said to be separable.

(ii) Those in which separated equations are obtainable but which

do not allow a single solution to be split off. Redheffer calls these

nonseparable   but    with    separable   solution.

(iii) All systems not in (i) and (ii). In the LBR paper [2], atten-

tion is confined to (i), while (ii) is ignored.

This tripart classification, though ingenious, does not appear to be

very helpful. The practical question that always arises in the solu-

tion of Laplace's equation is "In the given coordinate system, can

the partial differential equation be solved by the separation method,

or must we resort to some other method?" The usual binary classi-

fication answers this question; the Redheffer classification does not.

Separation. The following theorems [l] apply:

Theorem I. The necessary and sufficient condition for simple sepa-

rability of the Laplace equation, in euclidean 3-space with an orthogonal

coordinate system and <p=<p(ul, u2, u%), are

2-      M-, e112
(i) — = ~i~ >      — = Mu*)Mu*)M*)M n,

gii       Mn gu

where Mn is the cofactor of the element <$,i in the Stocket matrix,

[S] = [*«(«*)], »,¿-1,2,3.

Theorem II. The necessary and sufficient condition for R-separability

of the Laplace equation, in euclidean 3-space with an orthogonal co-

ordinate system and <p=4>(ul, u2, u*), is

3    i     a /  dR\        R
(2) £7— 7-XftT-i) + aiñ = 0'

i-i figu   óV\    óV/ Q
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where R and Q are defined by the relations,

(3) g« = -rSrQ,        ^r - /i(m1)/2(m2)/3(m3)(*)2.
Mn QS

The LBR results are most succinctly stated in the eight theorems

of the abstract to the 1949 paper [2]. The first three theorems refer

only to the splitting off of a single variable, and are therefore trivial.

What we need is a criterion by which we can foretell, in the case of

an unfamiliar coordinate system, whether three separation equations

are obtainable. The Redheffer chipping process cannot be employed

in finding this criterion because the requirements for the first step may

be more restrictive than the general separability requirement.

A simple illustration brings out the difficulty. Consider Laplace's

equation in paraboloidal coordinates (p, v, X) :

((p - b)(p - c))1'2   d / ^ll2dtt>\
W = —-—- — ( (0* - b)(p - c))1'2 —

(p — v)(p — X)      dp\ dp/

((b - v)(c - v))1'2   d / a*\
(4)        + —-l((b- v)(c - v)y2 — )

(p-v)(\-v)      ÓVV bv)

((b - X)(X - c))1'2   d ( d<b\

(At - X)(X - v)      d\\ 3\/

To split off the X-part (with P = l), we let

<b = S(p, v)-Z(X).

Substitution gives

,.      J((m - b)(p - c)y>2 a ftt ^xl2dSX\
(X - v) L     s-(,-v)       Vp\{{11 - b)(tl - c))'7j\

r((b - y)(c - v))112  d / dS\-\

r((b - x)(x - c))1'2 d ( dz\i

which can be written in the form

Fi(X) + XF,(«, v) + Fs(p, v) = 0.

Evidently there is no way of eliminating the X in the second term, so

it is impossible to split off a differential equation in X. The same diffi-

culty arises with p or with v. One concludes, therefore, that in
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paraboloidal coordinates Laplace's equation cannot be separated by

Redheffer's method.

Yet everyone knows that it is separable. Applying the familiar

equation,

1     d   /    dU^ 3
(5) - — If —) + tf*£ afin = 0,

fi   du1 \     du* / y=i

one obtains directly the three separated equations for paraboloidal

coordinates:

d2M       1  r , ¿M      .
(u - b)(p - c) -— + — [2p - (b + c)] —- - [«2 - a*] M = 0,

dp2        2 dp

d2N       1  , . ¿N       .
(6) (b - v)(c - v) —- + — [2v - (b + ¿)] —- - [ai- «3^]N = 0,

dv2        2 dv

d2A        1   r , dA
(b - X)(X - c)-[2X - (b + c)]-h [ai- a3X]A = 0.

d\2       2 d\

Solution of these equations givesM(ju), N(j<), and A(X) ; and particular

solutions of Laplace's equation are

(7) 0= M(M)-N«-A(X).

Coordinate systems allowing separation. Let us compare the sep-

arable coordinate systems found by Redheffer with the systems

which we know allow separation. LBR Theorem (IV) deals with

coordinates that allow complete separation. According [2] to the

statement on p. 261, Laplace's equation can be separated only in the

following coordinate systems:

(a) Nine of the eleven Eisenhart systems [4],

(b) Toroidal coordinates,

(c) Inversions of (a) and (b).

The Redheffer method does not allow separation in general

ellipsoidal or paraboloidal coordinates (Class IV of Eisenhart [4]),

though Laplace's equation was actually separated in these co-

ordinates by Lamé [5] before 1859. LBR also discard many cyclide

coordinate systems studied by Bôcher [6], Wanger in [7], and Dar-

boux [8]. In particular, Bôcher [ó] lists 17 classes of separable,

cyclide coordinate systems. Theorem (IV) rejects many of these co-

ordinates and their inversions. Theorems (V) and (VI) consider the

special case of R = 1, which has been correctly treated by Eisenhart

[4] and others. LBR specifically exclude the general ellipsoidal and

paraboloidal cases.
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Theorem (VII) states, "Coordinates for RSZ or RX YZseparation

of the Laplace equation have the group property under inversion."

And on p. 261, "The set of coordinates giving separation is closed

under inversion." The group property refers to a set of elements and

a single operation, such that the set is closed with respect to this

operation. In Redheffer's case, the set consists of all coordinate sys-

tems in which Laplace's equation separates. The operation is inver-

sion in a sphere. Thus the theorem states that if we start with any

system in which the Laplace equation is separable, we can obtain

any other separable coordinate system by inversion. Starting with

any coordinate system, by proper choice of centers of inversion, we

can therefore obtain successively all the other elements of the group

and finally arrive at the coordinate system with which we started.

The idea is, of course, untenable. As an example, take spherical

coordinates. One family of coordinate surfaces are spheres, and it is

well known that an inversion of a sphere is always a sphere.1 How,

then, can any possible inversion or any succession of inversions trans-

form the family of spheres into, say, a family of paraboloids?

Regarding the totality of coordinate systems which allow separa-

tion, Redheffer [9] lists the "complete" tabulation of separable

systems, "giving the linear element (ds)2 for all euclidean co-

ordinate systems in which Laplace's equation separates." Among the

13 tabulated classes, one is surprised to find that 4 refer to the same

coordinate system (conical coordinates). The remaining items do not

include general ellipsoidal or paraboloidal coordinates or any of

the more general cyclide coordinates or their inversions.

One may wonder if there is any advantage in trying to list all

possible coordinates in which the Laplace equation separates. Includ-

ing asymmetric inversions, there appear to be at least 60 such distinct

systems, many of which are so mathematically complex that they

will never be used. On the whole, therefore, it may be wiser to con-

centrate on the coordinate systems [lO] which are most promising

from a practical standpoint.
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