
PLANAR LINE FAMILIES. I

P. C. HAMMER AND ANDREW SOBCZYK

Introduction. In this paper we introduce a definition of outwardly

simple line families, suggested by the work of one of the authors

[l], which associated certain families of extended diameters with

planar convex bodies. While we have made the obvious extensions

of this definition to «-dimensional space, in this paper we are con-

cerned only with planar line families.

A family F of lines in the affine plane is said to be outwardly simple

if it covers every point (including points at infinity) exterior to some

circle simply. In this paper we develop some properties of outwardly

simple line families, showing that all such may be obtained from the

class of continuous increasing functions mapping the closed interval

[O, l] into itself. We then show that each outwardly simple line

family is the set of extended diameters of a constant-breadth closed

convex curve. Finally, it is shown how to construct all constant-

breadth convex curves in the plane.

The first known work on the construction of constant-breadth

convex curves in the plane is due to Euler [2]. See [3, pp. 47—51]

and [4, pp. 130-139] for discussion and references. Our work com-

pletes the earlier work in giving essentially a method of constructing

all constant-breadth convex curves in the plane.

Outwardly simple line families. Let F be an outwardly simple

line family and let ß be a circle containing all intersection points of

pairs of lines in F in its interior. Then ß is simply covered by lines in

Fand every pair of lines in F intersects in the interior of ft Let a line

m in F intersect ß in the points * and y. Define a transformation T of

ß into itself by T(x) = y, T(y) = x.

Theorem 1.' The transformation T is a continuous involutory trans-

formation without fixed point of ß into itself.

Proof. That T is involutory and has no fixed point is clear. That

T is continuous follows, since each point and image pair *i, 7\*i)

separates any other point and image pair *2, T(x2).

Corollary to Theorem 1. Let y be a simple closed curve and let T

be an involutory transformation of y into itself with the property that

each point and image pair separates every other such pair on y. Then T
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is continuous and has no fixed point.

Now, let a cartesian coordinate system (u, v), with origin at the

center of ß, say, be chosen. Then the family of F lines can be written

in the form

(1) u sin a — v cos a — p(a) =0, 0 ^ a < it.

The continuity of p(a) follows from the continuity of T. Now when

a fir, continuity requires that p(a)—* — p(0) since the directions a = 0

and ct = ir coincide. For convenience we extend the range of p(a) to

the closed interval [0, it] and write p(0)= —p(ir).

Theorem 2. An outwardly simple line family covers every point in the

plane.

Proof. Let (m0, Vo) be any point in the plane and consider the con-

tinuous function of a :

f(a) = Mo sin a — Vo cos a — p(a).

Now /(0) = -v0-p(0) and /(tt) =v0-p(ir). Since p(0) = -p(ir), f(0)

= —/(it) and hence there is an angle oto, 0 ^a0 <ir, such that/(a0) = 0.

Hence (m0, v0) is on the line in F with direction angle a0- Q.E.D.

Since the outwardly simple line family F covers the entire plane,

there is a line in F through the center of the circle ft Let the w-axis

be taken along this line with origin at the center. Let x(a) and y(a)

be points on ß which are on the line with direction angle a in F and

let x(a) be in the half-plane v>0 and y(a) in the half-plane v<0. Let

the angle of the circular arc from the positive «-axis to x(a) be Ox

and the angle of the arc from the negative «-axis to y(a) be 62. Then

02 is an increasing continuous function of 0i, 02 = g(0i) such that

g(0)=0,g(-n-)=ir.

It is readily seen that if any continuous increasing function g(0i)

maps [0, it] into [0, ir], we can determine an outwardly simple line

family from it.

Theorem 3. Every outwardly simple line family in the plane de-

termines a continuous increasing function which maps [0, ir] into itself,

and conversely.

We mention a few results which may be readily established. Every

continuous involutory transformation of a circle into itself without

fixed point generates a continuous increasing function mapping

[0, 1 ] into itself and conversely. Every such involutory transforma-

tion determines an outwardly simple line family and conversely.
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Given a continuous involutory transformation, without fixed point,

of a circle into itself, then the line segments joining point and image

pairs cover the circular disk. This last result, generalized suitably, has

been established for arbitrary « in [5].

Extended diameters of convex bodies. It is shown in [l] that the

extended diameters of a planar convex body cover the plane. It is

further shown that one may pick a unique subfamily of diameters

which extend to give an outwardly simple line family and which one

is justified in calling the essential diameter family of the convex

body. The question naturally arises: For a given outwardly simple

line family F does there exist a convex body with its essential di-

ameters lying on lines in F? The question may be answered in the

affirmative trivially if one omits the requirement "essential." For, let

mx and m2 be two perpendicular lines in F, let ß be a circle containing

in its interior the intersection points of lines in F, and form a square

containing ß with diagonals along mi and wz2. Then, every line in F

cuts the square in a diameter of the square. However, the essential

diameters of a square all pass through its center.

Since we shall be dealing with constant-diameter-length convex

bodies, we may review a few facts concerning them. First, if all the

diameters of a convex body have the same length, then the dis-

tance between pairs of parallel contact lines of the body is constant.

The diameters are perpendicular to their corresponding pairs of

parallel contact lines. The diameters of a constant-diameter convex

body extend to give an outwardly simple family of lines and hence

all its diameters are essential.

Theorem 4. Let F be a given outwardly simple line family. Then there

exists a convex body C of constant diameter length such that its diameters

extend to give F. Moreover, the boundary of C may be taken as a smooth

curve.

Proof. Let ß be a circle containing every intersection point of

lines of F in its interior. Let m0 be any line in F. We designate one

ray of m0 with origin interior to ß by m0+. The complementary ray

we designate by m^~. We use m¡f as our zero angle indicator and meas-

ure all angles of rays or lines in the counterclockwise sense from it.

Let m be any line in F not coinciding with m0. Then the angle a of

the line is the angle from m<f to the line, 0^a<7r. Again we consider

m as divided into two rays with common origin inside ft The ray of

m making the angle a with m£ we term m+ and the complementary

ray making an angle ol+w we term m~.
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Now choose the three lines of F making angles ît/4, 7t/2, and

3jt/4 with mt- Label these lines mx, m2, mz respectively (see Fig.

1). Now we choose a point a0 on mt outside ß and drop a perpendicu-

lar from it to mt. The foot of this perpendicular on mt we call pi.

From px drop a perpendicular to mt and call the foot of this per-

pendicular p2. We continue in this fashion dropping perpendiculars

successively to mt, mt, mt, mf, mí, mï, m3, and mo- Now, this process

may be carried out provided no one of the perpendiculars enters the

circle ft However, it is readily seen that if Co is chosen far enough

Fig. 1

from ß on mt, the polygonal spiral, P«, will be exterior to ß. We as-

sume a0 to be so chosen. We shall later show that the terminal point

pa of Pi is on mt between ß and o0.

Now, starting again at a0 on mt, erect a perpendicular to mt and

extend until it intersects mt and qi. At qi on mt erect a perpendicular

intersecting mt at q2 and so on until we have "encircled" ß and re-

turned to mt at a point q$ which will be seen to be outside aa on mt-

This polygonal spiral we designate by Qt.

Next, let Xij be the intersection point of m, and m¡ where ii*j.

Now with *oi as center and the length of *oia0 as radius sweep a

circular arc from a0 on mt to at on mt- Then with xn as center and the

length of *i2«i as radius describe a circular arc from ai to o2 on mt-

Continuing in this manner we obtain 8 circular arcs and it is seen

that these arcs form a closed convex curve of constant diameter

length. This curve we designate as 74. The convexity and constancy
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of diameter of 74 follow since the curve is locally convex everywhere

and since the sum of "opposite" radii of arcs is constant. Further-

more, 74 separates P4 and Qx except at a0 where all these curves have

a point in common. Hence psq» on mt contains o0 in its interior.

The next step, clearly, is to refine the angular increments between

lines. To do this we use the same lines as previously and take the next

four from F so that the angular increment is 7r/8. Then we generate

polygonal spirals P8 and Qg and a closed convex curve 78 of constant

diameter length exactly as before. We observe that P8 has only one

point, ao, in common with P4 and that it is further from the circle ß

on every ray of F than P4 except at a0. Furthermore, Qs has its first

line segment along the first of Qx but otherwise Q$ is "inside" of Qx.

As before, 7s separates P8 and Q& except for the common point a0.

The steps in an inductive procedure for determining a sequence

of curves pn, Qn, and 7«, « = 4-2*, k = 0, 1, 2, • • • , are now clear.

Letting « be fixed and ignoring the previous designation of points on

the curves we let c0, pi, • • • , pin be "corner" points of Pn;a0, qi, • • -,

qn the arcs of yn. Let the successive radii of circular arcs of 7» be

Ti, fit • • • 1 ̂ ín. The length of />,a,- is then exactly

(1 — cos a) [r, + fi_i cos a + rk-2 cos2 a + • • • + rx(cos a)i_1]

and the length of o,g,- is

(sec a — 1) [r, + r,_i sec a + ■ ■ • + (sec a)*-1]

where a=w/n. Now, the r,- are uniformly bounded and (sec a)2n ap-

proaches unity as « increases. Hence, the length />,2« = ^><a,-+a,-g,- goes

uniformly to zero since 1—cos a and sec ct — 1 both vanish with the

order 1/w2 and the sums of terms in parentheses are of order « in both

cases. Now since {P„} is an outwardly moving sequence of curves

along rays of lines in F and {Qn} is an inwardly moving sequence of

curves, they have a common limit curve which is also the limit curve

of {yn}- This limit curve we call 7. It is a convex curve bounding a

constant-diameter-length convex body C. However, we want to show

that the boundary of 7 is smooth, i.e., that at every point of 7 there

is a unique tangent line.

We change our mode of procedure. Suppose that mt is the positive

»-axis in a cartesian coordinate system and that the positive «-axis is

along mt where mx is the line in F perpendicular to «i0. Consider the

differential equation

dv
— = — tan a
du



■9531 PLANAR LINE FAMILIES. I 234

subject to the initial condition (u = 0, v = v0) where (0, vB) is the point

a0. This is the differential equation of normals to the family F. Now

it may be established in an appreciable open region containing the

point a0 that the Lipschitz condition is satisfied and hence the

existence of a unique solution arc through o0 is assured. It can also

be established that the part of this arc starting at a0 and proceeding

for increasing ct's lies between P„ and Qn along rays of F for every w.

Hence this arc lies on y. One may then change the axis designation

and extend the arc in a finite number of steps completely around ß.

Since these solution arcs all lie on 7, the curve finally closes at o0.

Hence every point of 7 has a unique tangent line and the directions

of these lines change continuously. Furthermore, the tangent lines

are at right angles to lines of F and hence F is the extended diameter

family of C. Moreover, the uniqueness of solution of the differential

equation shows that 7 is the only curve cutting lines of F normally

and passing through a0 or any other point on 7. It readily follows that

if a is a point on mt further out than a0, there is a unique curve ya

which is of constant diameter, convex, ahd which cuts lines of F

normally. The increase in the constant diameter length from 7 to ya

is twice the length a0a. This can be seen from the polygonal spiral P„.

If we had started at a instead of a0 and constructed P„', say, then

the distance between corresponding points of P„ and P„' is

aa0(cos 7r/«)*, k = 0, 1, • ■ • , 2«. Since (cos ir/n)k—»1 as «—><», we

have that ya has a diameter increase over 7 by twice a<&. The con-

vex body of Theorem 4 is the body bounded by 7. Q.E.D.

Construction of all planar convex bodies of constant diameter

length. We have shown how to construct all outwardly simple

families of lines in the plane, given the set of all increasing continu-

ous functions mapping [O, l] into [O, l]. We shall now show how to

determine the complete class of convex bodies of constant diameter

length with diameters given along any outwardly simple family of

lines. In order to do this, we review some results contained in [l].

Let C be a closed planar convex body. If C has a center point,

then we say C is completely reducible and in that case the essential

diameters of C all pass through the center. If C has no center point,

then there exists a unique convex sub-body C, of C which has the

property that its essential diameters extended by a constant ratio no

less than one about their midpoints are precisely the essential di-

ameters of C. Furthermore, C, is the smallest sub-body of C for which

this is true. In particular, d may be C in which case we say C is ir-

reducible. Otherwise we say C is reducible to C,-. Every set obtained

by extending the essential diameters of C, about their midpoints
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with a fixed ratio greater than unity is a closed convex body reducible

to d. Ci has the property that either at least one pair of its essential

diameters intersects on the boundary or a boundary point of C, is a

limit point of intersection points of essential diameters.

In view of these results, consider an outwardly simple family of

lines, F, and the constant diameter convex body C shown to exist in

the proof of Theorem 4. If all the lines of F are copunctal, C is ob-

viously a circle and the family of all the circles concentric with C is

the set of all constant diameter convex bodies with F as the family

of extended diameters. Now suppose that the lines of F are not all

copunctal. The constant diameter convex body C has associated with

it a unique irreducible convex sub-body C, which, in view of the

above results, has a constant diameter length and the diameters of

d lie along the diameters of C, i.e., along the lines of F. One cannot

shrink the diameters of C, about their midpoints with a fixed ratio

to get a smaller convex body of constant diameter with diameters

along F, since diameters of C, intersect arbitrarily close to the

boundary or on the boundary of C,-. All convex bodies obtained by

expanding the diameters of C, about their midpoints with a constant

ratio give convex bodies of constant diameter length with diameters

lying on the lines of F. These bodies we call the exterior associated

bodies of d.
Suppose there were a convex body B of constant diameter with di-

ameters lying along lines of F which is not C, or any of its exterior

associates. Extend the diameters of B by a constant ratio greater than

1 to B' taking the ratio so large that the boundary of B' is outside C.

B' is a convex body of constant diameter. However, since the

boundaries of the exterior associated bodies of C,- simply cover the

plane exterior to C„ the boundary y' of B' must have a point in com-

mon with one. Then by the uniqueness of constant diameter convex

curves having F as the family of extended diameters in that region,

y' must be the boundary of one of the exterior associated bodies of

d and hence B is either C, or one of its exterior associates, since B'

is reducible to C,-.

Theorem 5. If F is an outwardly simple family of lines not all co-

punctal, then there exists a unique minimal convex body C of constant

diameter with diameters extending to give the family F. All the convex

bodies of constant diameter with diameters lying along lines of F are

included in the set of bodies containing C and its exterior associated

bodies. Furthermore, all the exterior associated bodies of C have smooth

boundaries. C itself may have angle points.



1953] PLANAR LINE FAMILIES. I 233

Concluding remarks. We have exhibited, granted the family of all

continuous increasing functions mapping [0, l] onto itself, all out-

wardly simple line families in the plane, and all constant diameter

convex bodies are orthogonal trajectories of these. The sense in which

constant diameter convex bodies in the plane are generalizations of

the circle is thus made clearer—the outwardly simple line families

being a natural extension of pencils of lines.

In Planar line families. II, we shall develop the analytic char-

acterization of outwardly simple line families and discuss the char-

acter of the intersection points of such families. P. C. Hammer has

constructed an example of an outwardly simple line family in 3-space

which cannot be obtained by extending the diameters of any convex

body.

Several problems are suggested by the work in this paper. To

mention one, what is the relationship among all increasing functions

determined by a given outwardly simple line family in the manner

described herein?
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