ON INSCRIBING n-DIMENSIONAL SETS IN A REGULAR n-SIMPLEX

DAVID GALE

1. Introduction. It was proved in 1901 [1] that every set of diameter 1 in n-space can be inscribed in an n-sphere of radius $r \le (n/2(n+1))^{1/2}$. The best and most recent proof was given in 1941 [2]. The geometric content of this result is made apparent by the following equivalent formulation: the circumscribed n-sphere of a regular n-simplex of diameter 1 will cover any n-dimensional set of diameter 1.

In this paper we prove a dual to the above result, namely (Theorem 1): the regular n-simplex whose inscribed sphere has diameter 1 will cover any n-dimensional set of diameter 1. We then apply this result to the case n=2 to show that every plane set of diameter 1 is the union of three sets each of diameter less than $3^{1/2}/2$. This result is related to the still unsolved conjecture of K. Borsuk [3] that every set in n-space of diameter 1 is the union of n+1 sets each of diameter less than 1. Our result gives the strongest possible answer to this question for n=2.

2. Main theorem.

Notation. Throughout this paper lower case letters will denote vectors, Greek letters will denote (real) scalars, the scalar product of the vectors x and y will be denoted by xy, and the norm of a vector x by |x|.

DEFINITIONS. By an n-simplex Σ in a Euclidean space we shall mean the convex closure of a set of n+1 vectors v_0, v_1, \dots, v_n . We shall say that Σ is regular if the numbers $|v_i-v_j|$ are equal for $i \neq j$, $i, j=0, \dots, n$. An (n-1)-face of Σ is the convex hull of any n vectors from among the v_i . A set S is said to be inscribed in Σ if $S \subset \Sigma$ and S intersects every (n-1)-face of Σ .

We now state the principal result.

THEOREM I. Let S be a closed subset of n-space of diameter 1. Then S can be inscribed in a regular n-simplex of diameter $d \le (n(n+1)/2)^{1/2}$.

PROOF. Let V denote (n+1)-dimensional Euclidean space with unit vectors e_0 , e_1 , \cdots , e_n . Let $\bar{e} = \sum_{i=0}^n e_i$ and let $L = \{x \mid x \in V, x\bar{e} = 0\}$. Since L is an n-dimensional linear subspace of V we may assume that S is imbedded in L.

Presented to the Society, September 5, 1952; received by the editors June 11, 1952.

Let $\alpha_i = \min_{x \in S} xe_i$, and let $a = \sum_{i=0}^n \alpha_i e_i$. Let $\beta_i = \max_{x \in S} xe_i$, and let $b = \sum_{i=0}^n \beta_i e_i$. Let $H_i^- = \{x \mid xe_i \ge \alpha_i\}$, $H_i^+ = \{x \mid xe_i \le \beta_i\}$. Let $\Sigma^- = \bigcap_{i=0}^n H_i^- \cap L$, $\Sigma^+ = \bigcap_{i=0}^n H_i^+ \cap L$.

We shall show that Σ^- and Σ^+ are regular *n*-simplexes and at least one of them has diameter $d \leq (n(n+1)/2)^{1/2}$. The proof will be divided into three parts.

(1) We first show that $a\bar{e} \leq 0$ and $a\bar{e} = 0$ only if S consists of a single point.

For any $x \in S$, $xe_i \ge \alpha_i$, hence $\sum_{i=0}^n (xe_i) = x\bar{e} \ge \sum_{i=0}^n \alpha_i = a\bar{e}$, but $x \in L$ so $x\bar{e} = 0$, hence $a\bar{e} \le 0$. If $a\bar{e} = 0$ then $\sum_{i=0}^n \alpha_i = 0$ and for any $x \in S$, $\sum_{i=0}^n xe_i = 0$, but $xe_i - \alpha_i \ge 0$, so $\sum_{i=0}^n (xe_i - \alpha_i) = 0$ implies $xe_i = \alpha_i$ for all i, hence x = a. Similarly one shows that $b\bar{e} \ge 0$ and equality holds only if S consists of a single point. Since in the latter case the theorem is trivial we assume henceforth that $a\bar{e} < 0$ and $b\bar{e} > 0$.

(2) Σ^- and Σ^+ are *n*-simplexes and S is inscribed in both.

We shall show that Σ^- is the simplex spanned by the vectors v_0, v_1, \dots, v_n where $v_i = a - (a\bar{e})e_i$. First suppose $x = \sum_{i=0}^n \lambda_i v_i$ where $\lambda_i \ge 0$ and $\sum_{i=0}^n \lambda_i = 1$. Then $x = \sum_{i=0}^n \lambda_i (a - (a\bar{e})e_i) = a - (a\bar{e}) \sum_{i=0}^n \lambda_i e_i$, so $xe_i = \alpha_i - \lambda_i (a\bar{e}) \ge \alpha_i$ since $a\bar{e} < 0$. Also $x\bar{e} = \sum_{i=0}^n xe_i = \sum_{i=0}^n \alpha_i - a\bar{e} = 0$, so $x \in \Sigma^-$.

On the other hand suppose $x \in \Sigma^{-}$. Then $x = \sum_{i=0}^{n} \mu_{i}e_{i}$ where $\mu_{i} = xe_{i} \ge \alpha_{i}$ and $\sum_{i=0}^{n} \mu_{i} = 0$. Now since $a\bar{e} \ne 0$ we can write $e_{i} = (1/a\bar{e})(a-v_{i})$, so $x = (1/a\bar{e})\sum_{i=0}^{n} \mu_{i}(a-v_{i}) = -(1/a\bar{e})\sum_{i=0}^{n} \mu_{i}v_{i}$. From the definition of v_{i} we see that $\sum_{i=0}^{n} \alpha_{i}v_{i} = 0$, so we may write

(*)
$$x = -(1/a\bar{e}) \sum_{i=0}^{n} \mu_{i} v_{i} + (1/a\bar{e}) \sum_{i=0}^{n} \alpha_{i} v_{i} = (1/a\bar{e}) \sum_{i=0}^{n} (\alpha_{i} - \mu_{i}) v_{i},$$

and $(\alpha_i - \mu_i)/a\bar{e} \ge 0$ since $\mu_i \ge \alpha_i$ and $a\bar{e} < 0$. Also $(1/a\bar{e}) \sum_{i=0}^n (\alpha_i - \mu_i) = \sum_{i=0}^n \alpha_i/a\bar{e} = 1$. Thus Σ^- is the convex closure of the v_i 's.

To show that S is inscribed in Σ^- we must show that it has a point in common with each (n-1)-face of Σ^- . Now there is an $x \in S$ such that $xe_i = \mu_i = \alpha_i$. Using this in the expression (*) above we see that x lies in the (n-1)-face of Σ^- opposite the vertex v_i .

The proof for Σ^+ is similar.

(3) Σ^- and Σ^+ are regular simplexes of diameter $d^- = -2^{1/2}a\bar{e}$ and $d^+ = 2^{1/2}b\bar{e}$ respectively, and min $(d^-, d^+) \leq (n(n+1)/2)^{1/2}$.

Working with Σ^- , for $i \neq j$ we have $v_i - v_j = -a\bar{e}(e_i - e_j)$ so $|v_i - v_j| = ((ae)^2(e_i - e_j)^2)^{1/2} = 2^{1/2}|a\bar{e}| = -2^{1/2}a\bar{e} = d^-$, and similarly each edge of Σ^+ has length $d^+ = 2^{1/2}b\bar{e}$. To estimate min (d^-, d^+) we first show that $\beta_i - \alpha_i \leq (n/(n+1))^{1/2}$ for all i. It suffices to show this for $\beta_0 - \alpha_0$. Choose x and $y \in S$ such that $xe_0 = \alpha_0$, $ye_0 = \beta_0$ and let $x = \alpha_0 e_0$

$$\begin{split} &+\sum_{i=1}^n \gamma_i e_i, \ y=\beta_0 e_0 + \sum_{i=1}^n \delta_i e_i \ \text{and let} \ \theta_0=\beta_0-\alpha_0, \ \theta_i=\delta_i-\gamma_i \ \text{for} \\ &i>0. \ \text{Then} \ \sum_{i=0}^n \theta_i=0 \ \text{and} \ \sum_{i=0}^n \theta_i^2 \leq 1, \ \text{using for the first time the} \\ &\text{hypothesis that the diameter of} \ S \ \text{is} \ 1. \ \text{Now} \ 0 \leq \sum_{i=1}^n (\theta_i+\theta_0/n)^2 \\ &=\sum_{i=1}^n \theta_i^2 + (2\theta_0/n) \sum_{i=1}^n \theta_i + \theta_0^2/n = \sum_{i=1}^n \theta_i^2 - \theta_0^2/n, \ \text{so} \ \theta_0^2/n \leq \sum_{i=1}^n \theta_i^2 \\ &\text{and} \ ((n+1)/n)\theta_0^2 \leq \sum_{i=0}^n \theta_i^2 \leq 1 \ \text{which gives} \ \theta_0 \leq (n/(n+1))^{1/2}. \end{split}$$

Now $d^++d^-=2^{1/2}(b\bar{e}-a\bar{e})=2^{1/2}\sum_{i=0}^n (\beta_i-\alpha_i) \le (2n(n+1))^{1/2}$ and since d^+ and d^- are both positive it follows that one of them is less than or equal to $(n(n+1)/2)^{1/2}$ completing the proof.

REMARK. One easily computes the diameter of the regular *n*-simplex whose inscribed sphere has diameter 1, and finds it to be exactly $(n(n+1)/2)^{1/2}$. Therefore the inequality we have obtained is the best possible.

3. Applications. We use the preceding result to prove the following theorem.

THEOREM II. Every plane set S of diameter 1 is the union of 3 sets each of diameter $d \le 3^{1/2}/2$.

PROOF. By Theorem I, S can be inscribed in an equilateral triangle Δ of side $s \le 3^{1/2}$. Assuming the most unfavorable case, i.e., that $s = 3^{1/2}$, we shall describe the desired decomposition.

Let Δ have vertices A, B, and C, let a and b be the midpoints of BC and AC respectively, and let O be the center of Δ . Let γ be a line parallel to and of distance 1 from AB, intersecting AC and BC in points p and q respectively. Since the diameter of S is 1, S lies between lines γ and AB. Let R_1 be the pentagon with vertices O b p q a and let R_2 and R_3 be the region obtained by rotating R_1 about O through angles $2\pi/3$ and $4\pi/3$. Then $S \subset R_1 \cup R_2 \cup R_3$. By direct computation one shows that the diameter of R_1 is the distance from a to b which is $3^{1/2}/2$, and since R_2 and R_3 are congruent to R_1 the theorem is proved.

REMARK. It is easily shown that a disc of diameter 1 cannot be decomposed into three sets each having diameter less than $3^{1/2}/2$ and therefore the inequality of Theorem I is the best possible. This result suggests a strengthening of the Borsuk conjecture, as follows. Let the n-sphere of diameter 1 be decomposed into n+1 sets, S_0 , S_1 , \cdots , S_n so that \max_i (diameter S_i) = d_n where d_n is as small as possible. Then every set of diameter 1 in n-space is the union of n+1 sets of diameter at most equal to d_n .

As a further application of the main theorem one can prove the known fact [4] that every plane set of diameter 1 can be imbedded in a regular hexagon the distance between whose opposite sides is 1.

In three-space one can show that every set of diameter 1 can be imbedded in a regular octahedron the distance between whose opposite faces is 1. We omit the proofs.

BIBLIOGRAPHY

- 1. H. W. E. Jung, Über die kleinste kugel, die eine räumliche Figur einschliesst, J. Reine Angew. Math. vol. 123 (1901) pp. 241-257.
- 2. L. M. Blumenthal and G. E. Wahlin, On the spherical surface of smallest radius enclosing a bounded subset of n-dimensional Euclidean space, Bull. Amer. Math. Soc. vol. 47 (1941) pp. 771-777.
- 3. K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. vol. 20 (1933) pp. 177-190.
- 4. T. Bonnesen and W. Fenchel, *Theorie der konvexen Körper*, Springer, 1934, pp. 130-131.

Brown University