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1. Introduction. It was proved in 1901 [l] that every set of di-

ameter 1 in «-space can be inscribed in an «-sphere of radius r

^(«/2(ra+l))1/2. The best and most recent proof was given in 1941

[2]. The geometric content of this result is made apparent by the

following equivalent formulation: the circumscribed «-sphere of a

regular «-simplex of diameter 1 will cover any «-dimensional set of

diameter 1.

In this paper we prove a dual to the above result, namely (Theo-

rem 1): the regular «-simplex whose inscribed sphere has diameter 1

will cover any «-dimensional set of diameter 1. We then apply this

result to the case n = 2 to show that every plane set of diameter 1 is

the union of three sets each of diameter less than 31/2/2. This result is

related to the still unsolved conjecture of K. Borsuk [3] that every

set in «-space of diameter 1 is the union of «+1 sets each of diameter

less than 1. Our result gives the strongest possible answer to this

question for « = 2.

2. Main theorem.
Notation. Throughout this paper lower case letters will denote

vectors, Greek letters will denote (real) scalars, the scalar product of

the vectors * and y will be denoted by xy, and the norm of a vector

* by |*|.
Definitions. By an n-simplex S in a Euclidean space we shall

mean the convex closure of a set of «+1 vectors vo, »i, • • • , vn. We

shall say that 2 is regular if the numbers | Wf—uy] are equal for ir*j,

i,j = 0, ■ ■ • , «. An (« — 1 ) -face of 2 is the convex hull of any« vectors

from among the ft*. A set 5 is said to be inscribed in S if 5C2 and 5

intersects every («—l)-face of 2.

We now state the principal result.

Theorem I. Let S be a closed subset of n-space of diameter 1. Then

S can be inscribed in a regular n-simplex of diameter d^(n(n+l)/2)1/2.

Proof. Let V denote («+l)-dimensional Euclidean space with

unit vectors e0, Ci, • • • , en. Let ê= 2ZX-0 e» anc^ ^et L= {x\x(E.V,

xè = 0}. Since L is an «-dimensional linear subspace of V we may

assume that 5 is imbedded in L.
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Let aj = minies *£.-, and let a= 2"-o a»e»-

Let /3< = maxies xeit and let b= 2^,1-0 ft*«.

Let Hr={x\xei^cti}, Ht = {*|*e«-áft}.
Let -L- = \X.oHTr\L, 2+ = n?.0ff,+ni.
We shall show that 2~ and 2+ are regular «-simplexes and at least

one of them has diameter ¿^(«(»+1)/2)1/2. The proof will be di-

vided into three parts.

(1) We first show that aë ±S 0 and aë = 0 only if 5 consists of a single

point.

For any xÇzS, *e,^Q!¿, hence XXo (*««•)=*«=■ 2^1t-o a, = aë, but

*£L so *ê = 0, hence aë^O. If ae = 0 then ^?=0 a. = 0 and for any

xE.S, 52?_o *e. = 0, but *c¿—a.-^O, so 2?-o (*«.—a.)=0 implies
*e,- = cti for all í, hence * = a. Similarly one shows that bë ̂  0 and equal-

ity holds only if 5 consists of a single point. Since in the latter case

the theorem is trivial we assume henceforth that ae<0 and be>0.

(2) 2- and 2+ are «-simplexes and 5 is inscribed in both.

We shall show that 2~ is the simplex spanned by the vectors

z/0, vi, ■ • • , vn where v( = a — (oe)e¿. First suppose *= 2?-o X«»»

where X, = 0 and XXo X, = l. Then *= 2Z"-o X,(c —(aê)e,) =a
— (aë) XXoXißi,so*c<=«,—X,(aê) ^a< sinceaë<0. Also*ë= J^'-o^»-

= XXo a»—aë = 0, so *£2~.
On the other hand suppose *£2~. Then *= 2?-o M«6«- where

/¿, = *e,sïa,- and 2^?«0 M» = 0- Now since aë^O we can write «¿

= (l/aê)(a-î»<), so x = (1 /aë) 2~lï-o Pi(a-v,)= -(1/aë) 2ZI-0 Wt-
From the definition of v¡ we see that 2^L"-o «,-»,• = 0, so we may write

n n n

(*)      * = - (1/aê) 2\L ****• + (I/««) S a'vi = (l/«ê) X («< — w)»*
1=0 1=0 t—0

and (a<—pi)/ae^0 since m<=«< and ae<0. Also (1/aë) 2ZX-0 (<*»—/*<)

= X^?-o cti/aë= 1. Thus 2~ is the convex closure of the »,'s.

To show that 5 is inscribed in 2_ we must show that it has a point

in common with each (« —l)-face of 2~\ Now there is an *£5 such

that xei=pi = a.i. Using this in the expression (*) above we see that

* lies in the (»—l)-face of 2~ opposite the vertex »,-.

The proof for 2+ is similar.

(3) 2- and 2+ are regular simplexes of diameter d~= —2ll2aë and

¿+ = 2info respectively, and min (d~, d+)ú(n(n + l)/2y>2.

Working with 2-, for ij*j we have w<—v¡= —ae(ei—e¡) so |»,—v¡\

= ((ae)2(ei—e,)2)1/2 = 21/2|ae| = —2ll2aë = d~, and similarly each edge

of 2+ has length d+ = 2ll2bë. To estimate min (d~, d+) we first show

thatft —a,á(«/(«+l))1/2for allí. It suffices to show this forßo—a0.

Choose * and y £5 such  that xeo=cto, yeo=ßo and  let x = otoeo
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+ ZXi T»«<> y=ßoeo+YJ=i 5¿e< and let 00 = ßo-cto, 0« = 5,-7, for
j>0. Then 2~2"-o <?,- = 0 and 2ZI-0 0?^L using for the first time the

hypothesis that the diameter of 5 is 1. Now Og Z£=i (0,+0o/«)2

= Z?-. »î+(2flo/») Z?-i ff.-+flS/»= Zî-i flî-C», so flg/»^ E?-i «?
and ((« + l)/«)^= Z?-ofl?^l which gives Ö0^ («/(« +1))1/2.

Now d++d- = 21i2(be-ae) = 21'222to (ft-««) ^(2«(»+l))1/2 and

since ¿+ and d~ are both positive it follows that one of them is less

than or equal to («(« + 1)/2)1/2 completing the proof.

Remark. One easily computes the diameter of the regular «-simplex

whose inscribed sphere has diameter 1, and finds it to be exactly

(»(« + 1)/2)1/2. Therefore the inequality we have obtained is the

best possible.

3. Applications. We use the preceding result to prove the follow-

ing theorem.

Theorem II. Every plane set S of diameter 1 is the union of 3 sets

each of diameter d^3ll2/2.

Proof. By Theorem I, 5 can be inscribed in an equilateral triangle

A of side s^31/2. Assuming the most unfavorable case, i.e., that

s = 3112, we shall describe the desired decomposition.

Let A have vertices A, B, and C, let a and b be the midpoints of BC

and AC respectively, and let O be the center of A. Let 7 be a line

parallel to and of distance 1 from AB, intersecting AC and BC in

points p and q respectively. Since the diameter of 5 is 1, 5 lies be-

tween lines 7 and AB. Let Ri be the pentagon with vertices Ob p q a

and let R2 and Rz be the region obtained by rotating i?i about O

through angles 2ir/3 and 4tt/3. Then SCRiVRJJRz. By direct
computation one shows that the diameter of Rx is the distance from

a to b which is 31/2/2, and since R¡ and R3 are congruent to Rx the

theorem is proved.

Remark. It is easily shown that a disc of diameter 1 cannot be

decomposed into three sets each having diameter less than 3i/2/2

and therefore the inequality of Theorem I is the best possible. This

result suggests a strengthening of the Borsuk conjecture, as follows.

Let the w-sphere of diameter 1 be decomposed into « + 1 sets,

So, Sx, ■ • ■ , 5„ so that max,- (diameter 5.) =dn where dn is as small

as possible. Then every set of diameter 1 in «-space is the union of

M+l sets of diameter at most equal to dn.

As a further application of the main theorem one can prove the

known fact [4] that every plane set of diameter 1 can be imbedded

in a regular hexagon the distance between whose opposite sides is 1.
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In three-space one can show that every set of diameter 1 can be im-

bedded in a regular octahedron the distance between whose opposite

faces is 1. We omit the proofs.
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