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so that the relation (3.1) is an obvious consequence of (3.2), (3.3),

(3.4), and (3.8).

References

1. F. Riesz, Les systèmes d'équations linéaires à une infinité d'inconnues, Paris, 1913.

2. I. J. Schoenberg, Some analytical aspects of the problem of smoothing, Courant

Anniversary Volume, New York, 1948, pp. 351-370.

3. G. Szegö, Beiträge zur Theorie der Toeplilzschen Formen, Math. Zeit. vol. 6

(1920) pp. 167-202.

University of Colorado and

Stanford University

A NEUMANN SERIES FOR THE PRODUCT OF TWO
WHITTAKER FUNCTIONS1

PETER HENRICI

1. Introduction. Several series representations in terms of Bessel

functions have been given recently for a single Whittaker function

of the first kind (usually denoted by MK,?(z)) by various authors.2

None of these series is very easy to survey, because their coefficients

are never given explicitly but only either by means of a generating

function (as in [4]) or by recurrence formulae (as in [l] and [ó]).

In the present paper a generalized Neumann series for the product of

two Whittaker functions of the first kind with common indices but

different arguments is given, in which the coefficients are formed by

certain terminating generalized hypergeometric series and by Gegen-

bauer polynomials. The expansion obtained includes also the case of a

single Whittaker function, which is of special interest in connection

with the theory of Coulomb waves.3 Our method of proof uses only

the simplest properties of the function M,tlt(z) and is especially

much more elementary than the methods of [4]. All symbols used are

those of Magnus-Oberhettinger [7], with exception of that for the

generalized hypergeometric series, for which we use Bailey's [2] no-

tation.

2. Theorem. For arbitrary complex values or r, 6, k, and 4/i

t^ — I, —2, • ■ ■ the following expansion holds:
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1 This paper was prepared in part under a National Bureau of Standards Contract

with The American University.

* Abramowitz [l], Buchholz [4], Karlin [6], H. Schmidt [4], Tricomi [4].

8 Cf. [l ] and the literature quoted there. The function fo,(ij, p) considered in [l ]

is identical with M<mL+m(.2ip) ' (2ip)-(i+1>.
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MK.ß{ir{l + cos 0))M«.M(-tr(l - cos 0))(r sin 0)-<2«+i>

(- i)»(2u + 1/2 + «)(u + k + 1/2)B

(1)

= 22«+1'2r ( 2/x + —) ¿
V          2 / „to (2u + 1)„

tu 4- 1/2 4- k, — 2u — n, — n; "I
III                «    9    4-1. ! k^1'2^1^0

— /c + 1/2 — ju — n, 2p. + 1 ; J

(2^+1/2)
•C„ (cos 0).

3. Proof.
3.1. Systems of coordinates. The following considerations are made

in the two-dimensional complex Euclidean {x, y) -space K2. We shall

also use in this space polar coordinates (r, 0) and parabolic coordinates

(£, r¡), respectively connected with {x, y) by the relations

x = r cos 0 = (É2 - jj2)/2,
(2)

y = r sin 0 = £»7.

The ambiguities arising by (2) in the complex part of K2 will not be

of significance in the following. Evidently, from (2),

£2 = r(l + cos 0),       v2 = r{\ - cos 0).

A fourth system of coordinates will be introduced in 3.4.

3.2. Differential equation satisfied by (1). It is well known [3]

that, provided 2ji?*— 1, — 2, •••, the function

v{x, y) = {torW.M&MU-iv2)

(not identical with (1)) satisfies as function of x and y the equation

a2»       Ö2»       la»/        4/^
(3) — + -^: +-+Í1-)v = 0.

dx2      dy2       y  dy      \ y2 /

From here it is easily verified that u{x, y) =y~2thu{x, y), i.e. the left-

hand side of (1) satisfies

d2u      d2w      2v du
(4) -+ — +-4- « = 0,

dx2      dy2       y  dy

wherej' = 2M+l/2.4

3.3. Neumann series expansions for solutions of (4). It is generally

assumed6 and can easily be proved (although an explicit proof does

4 We need not consider here the well known physical interpretation of the equa-

tions (3) and (4).

' Cf. Watson [8, p. 367], and the papers of Gegenbauer quoted there.
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not seem to have been ever given), that ifv^O, — 1, —2, • • • , any

solution w(x, y) of (4), which is regular near x = y = 0, can be ex-

panded there in a unique way into a (generalized) Neumann series

of normal solutions of (4) as follows:

00

(5) w(x, y) = X) a*r '/r+»(r)CB' (cos 8).
n-0

In case w is an entire function of x and y, (5) converges for arbitrary

x and y. Assuming this result here and taking in account that « is an

entire function of x and y, the existence of an expansion of u of the

form (5) (and thus (1)) is established, and there remains only the de-

termination of the coefficients an in (5), when w=u.

3.4. Characteristic coordinates. To this purpose we introduce in (5)

the new variables6

(6) z = x + iy,       z* = x — iy.

We have then r*=zz*, cos2ö=(z+z*)2/422* and therefore

A (—zz*/4)m
(7) r-<'+»>/,+„(r) = 2-w->£--^-—-

m_o mlT(v + n + m + 1)

and

«_<»>,     ..     r(" + »),
r C„ (cos 8) = ——— (z + z*)»

girOO
Í8)

(n          w       1                             4zz*    \
->-1-» 1 — v — m;-I,

2           2        2                          (z + z*)2/

further

(9) e = (31/2 + z*1/s)2/2,       v2 = - (z1/2 - z*1'2)2/2.

3.5. Comparison of coefficients. As (5) holds for arbitrary values of

z and z*, it holds for z* = 0. It follows from (7) and (8) that in this

case the right-hand side of (5) reduces to

A r(» + n)
(10) Y. a«- -■ z".

„tí     2'+T(v + n + l)r«»!

For m(x, y) we obtain by the definition of Mt,„(z), by

M,,M(z) = JiT-H,.^«"»)«-**^1'«,

* The symbols * and y are treated here as independent complex variables. There-

fore, in general, zy^z*.
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by (9),anddueto£2+jj2 = 2r = 0,

^(-K + p + j; 2p+l;~\

•Jfi\K + ß + — ; 2p+ 1;  - y)

(H)      - ¿ /~ *ZY ¿ (- l)m(M + « + 1/2)„-w(m - K + 1/2).

¿ÍV   2   /   ¿i        (2« + l)n_m(2« + l)m(» - m)\m\

- y (~ izY (» + « + 1/2).

„_o\   2   /       «!(2u+l)„

r- 2/i - «, u - « + 1/2, - «; 1
•ST2 , 11.

L-/C+1/2-u- », 2u+ 1;     J

Comparing the coefficients of z" in (10) and (11) and remembering

the definition of v, we get, denoting the generalized hypergeometric

series in (11) simply by 3F2,

(2u+ 1/2 + n){p + K +l/2)n
an = 22*+'/2r(2u + 1/2) ' "V (-i)"aF2.

(2u + 1)»

Inserting this in (5), we obtain (1).

4. Special cases. Among the various expansions, which may be

derived from (1) as special cases, the following are of particular

interest.

4.1. Expansion of a single MK,„. Because

M      r(2, + .)

ri»»!

0 = 0 in (1) yields immediately

M.Mir) ■ {2ir)-<»+im = 22"+1'2r(2u 4- 1/2)

«   (-f)"(2/.+ l/2+»)0,+«+l/2)f,(4i.+ l).
X E -.„   , „    ,-— 3F1r-^+1^Jlß+1/2+n{r).

n=0 (2/¿+l)n«!

4.2. Product of Bessel functions. If we put k = 0 in (1), the Whittaker

functions degenerate [9, p. 338] into certain Bessel functions. On

the other hand,

[>+1/2, -2M-», -»;   H
3^2 = 3^2      , 1

L1/2-M-», 2m+1¡ J
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becomes then well-poised [2, p. 13] and can therefore be expressed

in terms of T-functions. Thus we obtain, after some manipulation,

the expansion

jj (1 + cos 8) —J /„ (— (1 - cos 8) J {r sin 0)-2"

■7)
2\l/2

T(2M + 1/2)

¿(-l)-(2ii+l/2 + 2»)(-)
m=0 \ 2 /

r(i/2 + m + »)

^To \ 2 /„ T(l + 2M + »)T(1 + n + m)

-(2^+1/2) (2^+1/2)
• r /!^+i/2+2m(r)C2l»       (cos 0),

also valid only provided 4/i?¿ — 1, —2, • • • . This result can also be

established directly the method of 3.

4.3. Gegenbauer's expansion. In the case K=p.+l/2 we have [9, p.

338], Mll+m>ß(z)=z"+1i2e-"\ At the same time the ,£2 in (1) re-

duces to 1. We obtain thus immediately the following well known

generalization (due to Gegenbauer) of the Jacobi-Anger formula:

«"""" = 2T(,) ¿ {-ï)\v + n)r~X+n(r)c!:'\cos 8),

p * - 1, - 2, • • • .

5. Remarks. The proof of (1), given (with exception of the remark

at the beginning of 3.3) in full rigor can be rendered intuitive in the

following way. Introducing the variables (6) into (4), we obtain the

equation

d2u       2p. + 1/2 /du     du\       1
(12) -'   (-) + — « = 0,

dzdz*        z - z*   \dz     dz*/      4

i.e. a hyperbolic equation, whose two families of characteristics are

given by z = const., z* = const, respectively. Putting z* = 0 in (5)

means therefore that we are considering both sides of (5) on a char-

acteristic. Now it is a well known fact that (vaguely speaking) the

solution of a hyperbolic equation in two variables is determined by

its values on one characteristic of each family. Moreover, since u is

symmetric in z and z*, it suffices here to consider the values on only

one characteristic. Any relation between solutions of (4) or (12) can

therefore be proved by considering the values on a characteristic
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only. The outlined method yields in fact also very rapid proofs, e.g.

for the addition theorems of the Bessel functions.7
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