CONTINUA WHICH ARE THE SUM OF A FINITE NUMBER OF INDECOMPOSABLE CONTINUA

C. E. BURGESS

Swingle [7]¹ has given the following definitions. (1) A continuum M is said to be the *finished sum* of the continua of a collection G if $G^* = M$ and no continuum of G is a subset of the sum of the others.² (2) If n is a positive integer, the continuum M is said to be *indecomposable under index* n if M is the finished sum of n continua and is not the finished sum of n+1 continua.

Swingle has shown [7, Theorem 2] that if n is a positive integer and the continuum M is indecomposable under index n, then M is the finished sum of n indecomposable continua. The author has shown [2, Theorem 1] that if n=2 and the continuum M is indecomposable under index n, and G is a collection of n indecomposable continua whose finished sum is M, then G is the only such collection. In the present paper, it is shown that for a compact continuum, this theorem holds for any positive integer n. Also, there is given a necessary and sufficient condition that a compact continuum be indecomposable under index n.

An indecomposable continuum can be described as a nondegenerate continuum which is indecomposable under index 1. If n=1, then in order that a continuum M be indecomposable under index n, it is necessary and sufficient that M contain n+2 points such that M is irreducible about any n+1 of them. Swingle [7] has shown that it is impossible, in a certain manner, to generalize this theorem. Theorem 3 of the present paper might be considered a generalization of the necessary condition of the above theorem. However, it is easily seen that the converse of Theorem 3 is not true.

Theorems 1-5 are proved on the basis of R. L. Moore's Axioms 0 and 1₈. Hence these theorems hold in any metric space.⁴

THEOREM 1. If n>1 and the compact continuum M is the sum of n indecomposable continua M_1, M_2, \dots, M_n such that, for each i $(i \le n)$, a composant K_i of M_i does not intersect $M_1+M_2+\dots+M_{i-1}$

Presented to the Society, September 2, 1952; received by the editors May 24, 1952.

¹ Numbers in brackets refer to the bibliography at the end of this paper.

² The sum of the continua of G is denoted by G^* .

For a proof of this theorem, see [4, Theorem IV].

⁴ Moore's axioms are stated in [5]. The first three parts of Axiom 1 are denoted by Axiom 1₈.

⁵ If P is a point of a continuum M, the set of all points X such that P+X lies in a proper subcontinuum of M is called a composant of M.

 $+M_{i+1}+\cdots+M_n$, then M is indecomposable under index n.

PROOF. Suppose that there is a collection G consisting of n+1 continua whose finished sum is M. No continuum of G is a proper subset of one of the indecomposable continua M_1, M_2, \dots, M_n . Hence, for each i $(i \le n)$, if K_i intersects a continuum X of G, then X contains M_i . Consequently, there exist n continua of G such that their sum is M. This is contrary to the supposition that M is the finished sum of the continua of G. Since M is the finished sum of the continua M_1, M_2, \dots, M_n , then it is indecomposable under index n.

THEOREM 2. If n is a positive integer and the compact continuum M is indecomposable under index n, then there is only one collection of indecomposable continua whose finished sum is M.

PROOF. By [7, Theorem 2], there is a collection G consisting of n indecomposable continua M_1, M_2, \dots, M_n such that M is their finished sum. By [3, Theorem 1], for each i ($i \le n$), some composant K_i of M_i does not intersect $(G - M_i)^*$. Suppose that there is a collection G' of indecomposable continua such that $G' \ne G$ and M is the finished sum of the continua of G'. Let i be a positive integer not greater than n. Some continuum X_i of G' intersects K_i . Neither of the indecomposable continua X_i and M_i is a proper subset of the other. Since no proper subcontinuum of M_i intersects both K_i and $(G - M_i)^*$, then $X_i = M_i$. Hence G' = G.

THEOREM 3. If n > 1 and the compact continuum M is indecomposable under index n, then there is a subset H of M consisting of 2n points such that M is irreducible about every subset of H consisting of 2n-1 points.

PROOF. Let M_1, M_2, \dots, M_n be n indecomposable continua whose finished sum is M. For each i ($i \le n$), let K_i be a composant of M_i as described in the proof of Theorem 2. There exists a subset H of M such that for each i ($i \le n$), $H \cdot M_i$ consists of two points of K_i . The set H satisfies the requirements of the conclusion of Theorem 3.

THEOREM 4. If n > 1, M is a compact continuum, G is a collection consisting of n indecomposable continua whose finished sum is M, and H is a finite set of points about which M is irreducible, then M is indecomposable under index n.

LEMMA 4.1. If the hypothesis of Theorem 4 is satisfied, X is a continuum of G, and T is a component of $(G-X)^*$, then some composant of X does not intersect T.

PROOF OF LEMMA 4.1. Suppose that every composant of X intersects T. Then there exists a finite collection W of proper subcontinua of X such that $W^*+(G-X)^*$ is connected. There exists a finite collection Y of proper subcontinua of X such that (1) every continuum of Y intersects $(G-X)^*$ and (2) if X intersects H, then Y^* contains $X \cdot H$. Since X is indecomposable and M is the finished sum of the continua of G, then Y^*+W^* does not contain $M-(G-X)^*$. Therefore, $W^*+Y^*+(G-X)^*$ is a proper subcontinuum of M containing H. This is a contradiction since M is irreducible about H.

PROOF OF THEOREM 4. An inductive argument will be used. Suppose that Theorem 4 is not true. Let k be the smallest positive integer n such that if M is a compact continuum satisfying the hypothesis of Theorem 4, then M is not indecomposable under index n. By Theorem 1, there is a continuum X of G such that every composant of X intersects $(G-X)^*$. By Lemma 4.1, $(G-X)^*$ is not connected. Therefore, k > 2. The set $(G - X)^*$ is the sum of a finite number of mutually exclusive continua. Let T be one of these continua. Since M is irreducible about H, then $T-T \cdot X$ contains a point of H. By Lemma 4.1, there is a composant of X which does not intersect T. Let P be a point of such a composant. The continuum T+X is irreducible about the finite set $H \cdot T + P$. There is a positive integer j less than k such that T+X is the finished sum of j continua of G. Then T+Xis indecomposable under index j. By [3, Theorem 1], every continuum of G which is a subset of T+X contains a composant which does not intersect any other continuum of G which is a subset of T+X. Therefore, every continuum of G-X contains a composant which does not intersect any other continuum of G. Let L be a collection consisting of k-1 points such that if Z is a continuum of G-X, then a point of L belongs to a composant of Z lying in M $-(G-Z)^*$. Since, by supposition, M is not indecomposable under index k, then there is a collection G' consisting of k+1 continua whose finished sum is M. Since the set L is contained in the sum of k-1 continua of G', then $(G-X)^*$ is contained in the sum of k-1continua of G'. Hence there exist two continua X_1 and X_2 of G' such that each of them contains a point of $M-(G-X)^*$ which does not belong to any other continuum of G'. Let R be a domain intersecting X_1 and not intersecting $(G'-X_1)^*+(G-X)^*$. Every composant of X intersects R. Therefore, there exists a finite collection W of proper sub-

 $^{^{\}circ}$ This follows from the fact that every proper subcontinuum of an indecomposable continuum M is a continuum of condensation of M [4, Theorem II] and the fact that no indecomposable continuum is the sum of a finite number of its proper subcontinua [4, Theorem III].

continua of X such that $X_1+W^*+(G-X)^*$ is a continuum. Let Y be a finite collection of continua as described in the proof of Lemma 4.1. Since $X_1+Y^*+W^*+(G-X)^*$ is a subcontinuum of M containing H, then $X_1+Y^*+W^*+(G-X)^*=M$. Since X is indecomposable and $X_1+(G-X)^*$ contains $X-(Y^*+W^*)$, then $X_1+(G-X)^*$ contains X. This is impossible since $X_1+(G-X)^*$ does not contain X_2 . Thus the supposition that Theorem 4 is not true has led to a contradiction.

THEOREM 5. If n>1, then in order that the compact continuum M should be indecomposable under index n, it is necessary and sufficient that M should be the finished sum of n indecomposable continua and be irreducible about some n points.

The necessity follows from [7, Theorem 2] and [3, Theorem 2]. The sufficiency follows from Theorem 4.

THEOREM 6. If the compact continuum M in the plane is the finished sum of two indecomposable continua H and K such that some composant of H does not intersect K, then M is indecomposable under index two.

LEMMA 6.1. If the hypothesis of Theorem 6 is satisfied and K_1 and K_2 are mutually exclusive simple discs⁸ intersecting K but not H, then there do not exist four mutually exclusive continua W_1 , W_2 , W_3 , and W_4 such that, for each i ($i \le 4$), W_i belongs to K, intersects H, and is irreducible from K_1 to K_2 .

PROOF OF LEMMA 6.1. Suppose that there do exist four such continua. Let D denote the complementary domain of K_1+K_2 . Consider the case in which W_3+W_4 separates W_1 from W_2 in \overline{D} . Let R_1 and R_2 be connected domains intersecting $H \cdot W_1$ and $H \cdot W_2$ respectively and not intersecting $K_1+K_2+W_3+W_4$. There is a composant L of H which intersects both R_1 and R_2 and lies in M-K. Then L intersects $K_1+K_2+W_3+W_4$. This is a contradiction since M-K does not intersect $K_1+K_2+W_3+W_4$.

PROOF OF THEOREM 6. Suppose, on the contrary, that M is the finished sum of three continua M_1 , M_2 , and M_3 . One of these three continua intersects a composant of H lying in M-K. Suppose that M_1 is such a continuum. Then it contains H and intersects each of

⁷ For an example showing that this theorem does not hold true without the condition that M be irreducible about some n points, see [1, p. 540]. Also, see [2, Example 1]. Sorgenfrey [6] has proved a theorem giving a necessary and sufficient condition that a compact continuum be irreducible about some n points.

⁸ In the plane, a simple closed curve together with its interior is called a simple disc.

the continua M_2 and M_3 . Each of the continua M_3 and M_1+M_2 contains a point of K not belonging to the other of these two continua. Since the closure of $M-(M_1+M_2)$ is a proper subset of the indecomposable continuum K, then $M-(M_1+M_2)$ is not connected. Let T_1 and T_2 be two mutually separated sets whose sum is M $-(M_1+M_2)$. Let K_1 and K_2 be two mutually exclusive simple discs whose interiors intersect T_1 and T_2 respectively such that K_1 and K_2 do not intersect $T_2+M_1+M_2$ and $T_1+M_1+M_2$ respectively. Since every composant of K intersects both K_1 and K_2 , there exist six distinct composants of K each of which contains a continuum irreducible from K_1 to K_2 . By Lemma 6.1, at most three of these intersect H, and hence three do not. Denote three which do not by W_1 , W_2 , and W_3 . Let D denote the complementary domain of K_1+K_2 . There exist two of the continua W_1 , W_2 , and W_3 such that their sum separates the other one from H in \overline{D} . Consider the case in which $W_1 + W_2$ separates W_2 from H in \overline{D} . Let I denote the complementary domain of $K_1+K_2+W_1+W_3$ which contains the connected set $W_2 - W_2 \cdot (K_1 + K_2)$. Since one of the sets $K_1 \cdot W_2$ and $K_2 \cdot W_2$ belongs to T_1 and the other to T_2 , then $I \cdot W_2$ contains a point of the continuum M_1+M_2 . Since H is a subset of M_1+M_2 and does not intersect \overline{I} , then there is a continuum Z belonging to $\overline{I} \cdot (M_1 + M_2)$ and intersecting both W_2 and $W_1 + W_3$. But this is impossible since Z is a proper subcontinuum of K intersecting two composants of K. Thus the supposition that M is the finished sum of three continua has led to a contradiction.

THEOREM 7. If the hypothesis of Theorem 6 is satisfied, then uncountably many composants of K lie in M-H.

This theorem follows from Theorem 6 and [3, Theorem 1].

REMARK. Neither Theorem 6 nor Theorem 7 holds true in Euclidean three-dimensional space. Let H' be the point set obtained by translating the point set H of [2, Example 1] one-half unit to the left. Let H'' be a point set obtained by revolving H' through 90 degrees about the vertical line whose equation is x = 1/2. Only one composant of H'' intersects H, but every composant of H intersects H''. It follows from [3, Theorem 1] and Theorem 2 that the continuum H+H'' is not indecomposable under index two.

Added in proof. I have recently observed that Theorem 6 follows from Theorem 1 and a lemma proved by N. E. Rutt [Some theorems on triodic continua, Amer. J. Math. vol. 56 (1934) pp. 122-132 Lemma I]. I regret that I was not aware of Rutt's lemma at the time I prepared this paper.

BIBLIOGRAPHY

- 1. Paul Alexandroff, Über kombinatorische Eigenschaften allgemeiner Kurven, Math. Ann. vol. 96 (1927) pp. 512-554.
- 2. C. E. Burgess, Continua and their complementary domains in the plane, Duke Math. J. vol. 18 (1951) pp. 901-917.
- 3. ——, Continua and their complementary domains in the plane. II, Duke Math. J. vol. 19 (1952) pp. 223-230.
- 4. S. Janiszewski and C. Kuratowski, Sur les continus indécomposables, Fund. Math. vol. 1 (1920) pp. 210-222.
- 5. R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloquium Publications, vol. 13, 1932.
- 6. R. H. Sorgenfrey, Concerning continua irreducible about n points, Amer. J. Math. vol. 68 (1946) pp. 667-671.
- 7. P. M. Swingle, Generalized indecomposable continua, Amer. J. Math. vol. 52 (1930) pp. 647-658.

THE UNIVERSITY OF UTAH