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1. Introduction. For the differential system

(1.1) f(x, y, u, «„) = ux,

(1.2) «(0, y) = c(y),

where /, c, u are holomorphic functions of which /, c are known and

u is unknown, Cauchy's theorem states the existence of a unique

solution. The initial condition (1.2) effectively assigns the coefficients

of the terms which involve y alone.

Here is proved an existence theorem in which the initial condition

assigns one of the (re + 1) coefficients of each order re. Corresponding

to each non-negative integer n arbitrarily choose a pair of non-nega-

tive integers (/„, A„) satisfying /„+A„ = re. Select an infinite sequence

of complex numbers c„ subject only to the conditions

(i) that/ be holomorphic and /«„^O about x = y = 0, u=c0, uu = c,

where c equals Cx or satisfies /(0, 0, c0, c) =Cx according as/i or Ai is 0;

(ii) that

"   cnx>"yk»

(1.3) A = Z^7-
n-0     Jn'.knl

have a pair of nonzero radii of convergence.

The initial condition to be employed is

(1.4) cn = Uj„kn(0, 0) (« = 0, 1, 2, •• ■ ),

My* denoting u differentiated /, A times with respect to x, y respec-

tively. A sequence c„ satisfying (i) and (ii) is to be called an initial

sequence.

The specific result proved here is

Theorem 1.1. The determined differential system

(1.5) f(x, y, m, m„) = ux (/„„ * 0),

(1.6) c = My„t„(0, 0) (« = 0, 1, 2, •••),

where f is a given holomorphic function and cn is an arbitrary initial

sequence, has a unique holomorphic solution u(x, y).
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2. Equation pairs. An appeal to the implicit function theorem

shows that with each holomorphic / satisfying

fuy[0,0,u(0,0),uv(0,0)] ^0

can be associated a partner g to form an equation pair with the follow-

ing properties:

The pair consists of the equations

(2.1) /(*, y, M, m„) = ux,

(2.2) g(x, y, u,ux) = uy,

where/ and g are holomorphic. The numerical determination satisfies

both equations, that is,

(2.3) /[0, 0, «(0, 0), mv(0, 0)] = «,(0, 0),

(2.4) f [0, 0, «(0, 0), «,(0, 0)] = «,(0, 0).

Under evaluation by (2.1) or by (2.2) and in particular for the values

in (2.3), (2.4)

(2-5) /%!*-!.

3. The principal coefficients. Seek a solution

(3.1) «(*, y) =  2^ ———x'y
y,*=o     j!A!

whose coefficients are found by differentiating (1.5) or directly from

(1.6).
The coefficients cn are called parametric, the others, principal [2, p.

258]. The order of a coefficient is the order of the corresponding

derivative.

Under all circumstances, the coefficient m0o(0, 0) is parametric

and equals c0.

Of the two coefficients, m0i(0, 0), «i0(0, 0), one is principal and

the other parametric. If m0i(0, 0)=ci, evaluation of (2.1) gives

/(0, 0, co, Cx) = uxo(0, 0).

To carry the illustration one step farther, suppose for the sake of

definiteness

Cx = Mio(0, 0), Ci = Mii(0, 0).

Because of (2.3) the series

/[0, 0, Co, «oi(0, 0)]
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is convergent. So also are

/,[0, 0, co, moi(0, 0)],       /u[0, 0, c„, «01(0, 0)],

/UJ0, 0, co, «oi(0, 0)]

and the derived series of all orders for the same values. Similar state-

ments are true for g and its derivatives.

The principal coefficients of order two are given by

fx[0, 0, co, uox(0, 0)] + /u[0, 0, co, Moi(0, 0)]cx

+ /«»[0, 0, co, M01(0, 0)]c2 = M20(0, 0),

gv(0, 0, co, cx) + gu(0, 0, Co, Cx)uoi(0, 0) + g»x(0, 0, c0, Ci)c2 = m02(0, 0).

Both of these equal convergent infinite series in Co, cx, c2 whose co-

efficients are polynomials in the coefficients of/, g.

Induction shows that the principal coefficients of order re are ex-

pressed in terms of the parametric of order not exceeding re.

Apply all differentiations corresponding to the monomials x'yk for

/+A = w —1 and/„^/ to (2.1). Derivatives of order less than re being

ignored, this gives

(/«, K) < (/„ + 1, A„ - 1) < • • • < (re - 1, 1) < (re, 0),

a relation to be read from right to left "mko is expressed in terms of

«n-i.i, which in turn is expressed in terms of m„_2,2," etc.

Similarly, apply all differentiations corresponding to the monomials

x'yk for j+k = n — 1 and A„^A to (2.2) with the result:

(/«, kn) < (/„ - 1, A„ + 1) < • • • < (1, re - 1)< (0, re).

Every principal coefficient can consequently be found from

Co, Ci, d, • • • and the coefficients of/, g by the operations +, X.

4. Specialization of system. It is convenient to replace the sys-

tem /, g in the foregoing discussion by F, G with indeterminate coeffi-

cients. The series for its solution is called the indeterminate solution.

From the system so conceived the particular system for which

Theorem 1.1 is to be proved arises by assigning to the indeterminates

the values they have in the given/, g. The series for its solution will

be called the tentative solution.

A second particular system, called dominant for the first, arises by

assigning judiciously chosen values to the indeterminates. The solu-

tion of this system is called the dominant solution.

5. Reduction of initial sequence. Set

u = v + A,
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where A is the holomorphic function given by (1.3). The system (1.5),

(1.6) is thereby carried [2, pp. 254, 260] into another system of the

same form with all constants zero in the initial determination.

Consequently, in proving Theorem 1.1 it may be assumed that

«y»*,(0,0)=0.

6. The dominant system. The system

N 1
(6.1) —-——-—-+ — =UX,

(1- ax-by- cU)(l - dUy)       d

where N, a, b, c, d are positive constants at our disposal, arises by

specializing the indeterminate coefficients in (1.5). It is to be the

dominant equation.

The partner for (6.1) is

N 1
(6.2) -+ _=£/„.

(1 - ax-by- cU)(l - dUx)       d

Expansion of the left member of (6.1) gives

(6.3) JV + d'1 + Z NIabic"dlxiyUkUly = Ux,
i

I being a positive integer variable with i, j, A, /, and expansion of

(1.5) with Moo(0, 0) = Moi(0, 0) =0 gives

(6.4) /0000+ Z  .,.,,,„, xyuuy = ux,
1   t!;!A!t!

the fijki being the derivatives of / evaluated for all four arguments

equal to zero.

From Cauchy's inequality

'^"'   < Mp-'r'r-**-',
iljlklll '

where M, p, q, r, s are positive numbers. Subject N, a, b, c, d to

M UN,    p-1 g a,    q-1 ^ b,    r~l ■= c,   s~l g d,

(6.5) .        .
l/ooool ÛN + d-\

The coefficient in (6.3) then dominates its correspondent in (6.4).

The coefficients in the expansion of the left member of (6.2) are

identical with those in (6.3). The coefficients of g are dominated by

(6.3) provided the left members in (6.5) are replaced by the greater

of the two corresponding numbers for / and g.
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7. Solution of dominant equation. A particular solution of (6.1)

which is sufficient for the present purpose can be found by the usual

method. Seek a solution which depends on x, y only in the combina-

tion

z = ax + by

and denote differentiation with respect to z by an accent. Then

U. = all',        Uy = bU'.

The equation becomes

N 1
(7.1) ■-+ — = (a + b) V - abdU'2.

1 — z — ell       d

Choose £7(0) =0. The value U'(0)=w, say, must then satisfy

(7.2) Q(w) = abdw2 - (a + b)w + N + d~l = 0.

This equation has a simple root on

a + b
(7.3) 0 < w <-

2abd

provided

(a + b)2
N + d-1 < --— •

iabd

Fix b, d. Since the right member increases with a, the last inequality

can be satisfied.

Hence (7.1) has a root U' =P(z, U), where P is holomorphic about

z=U = 0.
By Cauchy's theorem for an ordinary equation, (7.1) has a solu-

tion U(z) holomorphic about z = 0 and satisfying

U(0) =0,       0 < U'(0) = w.

In order that the equal function U(x, y) dominate u(x, y), it is

necessary and sufficient that the coefficients of higher order all be

non-negative. That they are positive is shown by differentiating

(7.1) and writing the result thus:

(7.4) (a + b- 2abdU')U" = H(z, U, U'),

where H is a series in z, U, U' with positive coefficients. Successive

differentiation and evaluation give the desired result.

8. Convergence proof. The tentative solution is found by giving



1953] INITIAL CONDITION FOR CAUCHY'S EXISTENCE THEOREM 301

the indeterminate coefficients of F, G their appropriate values and

the parametric coefficients the value zero. The dominant solution is

found by giving the indeterminate coefficients of F, G the values

they have in (6.1) and the parametric coefficients non-negative

values. Because the calculation involves only the operations +, X,

each dominant coefficient is at least equal to the absolute value of

the corresponding tentative coefficient.

9. Satisfaction proof. Write

(9.1) R=f-ux,       S = g-uv.

Since the tentative solution u(x, y) and its partial derivatives

ux(x, y), Uy(x, y) are holomorphic, the substitution theorem for

holomorphic functions [l, p. 51 ] shows that substitution of the series

for u(x, y) in (9.1) gives holomorphic functions R(x, y), S(x, y). To

prove that u(x, y) satisfies the given system, it suffices to show that

(9.2) Rjk(0, 0) = Sjk(0, 0) = 0.

These equations for/ = A = 0 amount to (2.3), (2.4). The proof

proceeds by induction on/+A.

The crucial point is settled by the following remarks. From the

implicit function theorem the systems

(9.3) Py* = 0, /+A<re,

and

(9.4) Sjk = 0, /+A<«,

are equivalent in the sense that any values of the indeterminates

My*, j + * & »,

which satisfy one satisfy the other.

Now suppose in (9.3), (9.4), and all equations subsequently to be

written the arguments evaluated for x=y = 0. Consider the equation

(9.5) Rjk = ■ ■ ■ +fuyUj,k+i — Uj+i,k = 0

and its correspondent

(9.6) Sjk = ■ ■ ■ + guxUj+llk - Uj,k+1 = 0.

Elimination of My.j+i, My+i.* by use of (2.5) gives a relation among the

derivatives of order less than re —1, which being implied by (9.3)

must be implied by the equations of (9.3) not involving derivatives

of order re— 1, that is, by the system
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(9.7) *y* = 0, /+A<re-1.

Hence in the presence of (9.7) equations (9.5) and (9.6) are equivalent.

References

1. W. F. Osgood, Lehrbuch der Funktionentheorie, vol. 2, part 1, Leipzig, 1929.

2. J. M. Thomas, Orderly differential systems,  Duke Math. J. vol. 7 (1940) pp.
249-290.

Duke University

RECENT INVESTIGATIONS OF THE SEPARATION
OF LAPLACE'S EQUATION

PARRY MOON AND DOMINA EBERLE SPENCER

Introduction. Two independent studies [l; 2] have been made

recently of separability conditions for the Laplace equation. Since

the results of the two investigations are different, and even the

meaning of "separability" is not identical, it seems pertinent to com-

pare the two. We shall limit ourselves to euclidean 3-space and

curvilinear coordinate systems (m1, m2, m3).

The meaning of "separability." According to [l], separation is of

two kinds:

(a) If the assumption
3

* = n WM
»-1

permits the separation of the partial differential equation into three

ordinary differential equations, the equation is said to be simply

separable.

(b) If the assumption

1 3
<t> = ■——— n #*(«*)

R(u\ u2, «») ¿J

permits the separation of the partial differential equation into three

ordinary differential equations, and if R?*const., the equation is

said to be R-separable.

These definitions seem to be in agreement with the usual meaning

of the word "separability." Levinson, Bogert, and Redheffer  [2],
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