A NOTE ON BERNOULLI AND EULER NUMBERS
OF ORDER #p

L. CARLITZ

1. Introduction. The Bernoulli numbers of order 2 may be defined
by [6, p. 143]

k ©0 m
(1.1) ( d )= > 2 g® (Bm = BY).
e’ - 1 M=l ml
For k=p, put
(-1
(1.2) a= v (? )8 ©srsp-
r

then as is well known
+DE+2)---(x+p—1D) =21+ A7+ + 4,
Glaisher [4, p. 325] has established the congruences

1
Ay = — — pB,, (mod p?),
2r

1.
(1.3) 2r+1

p*Ba, (mod 2?)

A2r+l =

for 1<r=<(p—3)/2, p prime >3. On the other hand the writer [1]
has proved that

(1.4) B, = $/2 (mod p)
and indeed [2] the more precise result
(1.5) By = — $'(p — 1)Y/2 (mod p).
Now for k= —p, Nielsen [5, p. 338] has proved that
- 1
B = pBs (mod $),
1.6
(1.6 n _2r+1 ,

B == # By, (mod $),

where 1=r=(p—3)/2.
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In the next place we define the numbers C¥ by means of [6,
p. 143]
c® "

1)
(e==+1) ,..Z_‘;?_m_' Cn = Cn),

so that the C® are closely related to the Euler numbers of order k.
Corresponding to (1.3) and (1.6) we have, for k=p,

Cs'= pCa_1 (mod p ),
1.7 »
Copn=— (2r+1)p Cbbl (mod p ),

where now r=1. For k= —p, we have

(=p)

(1.8) = 7 P med 2),

C2r+1 = - (2" + 1)? CZr—l (mOd ? )
for r=1; (1.8) is due to Nielsen [5, p. 292]. We remark that (1.3),
(1.6), (1.7), (1.8) are proved in a uniform manner in [3].

In view of the above it is natural to seek congruences corresponding
to (1.5) for the numbers BS™, €&, €5, Since

BSY = ™3 (- e ( ")rw,

( + k)' =0
it seems convenient, in analogy with (1.2), to define
— 12
(1.9) Ap=—2 (—1)r—r(1’ )fm+r.
?! ra=() r

Then we shall show that
(1.10) A, = pA, + PGBP—S (mod %),
while

— 2
(1.11) Apa = : ’—1+(p— 1)! (mod p?).
In particular (1.10) and (1.11) imply

i P“ 1
(1.12) A, =p2(p— I+ pyi (mod 2.

In the next place for C® we prove
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(»)

(1.13) Cyp =—P(P"1)Cp—2(m°dﬁ)
For C{™® we prove
(1.14) Cy " = §'Co 3 + 39'Cyoi (mod $);

also
p—4 -2
(1.15) CE 4 pCpa=Cli=p > (” . ) C.Cpss (mod $).
1

We suppose throughout that p is a prime >3.

2. Proof of (1.10) and (1.11). To prove (1.10) we make use of the
following formula [5, p. 293]:

(2.1) 4, = 'Z_())( 1)«(p+ )pr-'Z.,

which can be proved without much trouble using (1.9). Now for
r=p, (2.1) becomes

; (- l)p_.( P) P A

But by (1.6) we have
Aps=13p*By 3 (mod p?), Ap3= — §pB,s(mod p?),
so that (2.2) yields
24, = 2p"A, 1 + 3p°Bo-s — $#°Bps
= 2p"A 1 + $p°B,—s (mod p°),

which is equivalent to (1.10).
To prove (1.11) we use the formula [6, p. 146]

(2.3) BY = — —Z (- 1)-( )B,B,‘,f_’.

m e=1

In (2.3) take m=p—1, k=p and —p, and use (1.3) and (1.6); we get
after a little manipulation

B:’.’;’ - B;‘l)l = Z:Bp—l

(mod p%),
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which is equivalent to (1.11).
3. Proof of (1.13). We shall require the formula [6, p. 146]

(3.1) Cohi=— kZ (- 1)~( )C.C,(:_)..

which is evidently analogous to (2.3). For k=m-+1=p, (3.1) implies
(since Cer=0 for r>0)

5 G C“” =—-Cc2+ Z (1’ - )C.Cfl’l_. + (p = 1)CpeCr”
=1
— C2 = p(p — 1)Cps

— p%p — I)ZI?( : )c.c,_a_. (mod %)

3.2

by the second of (1.7). In the next place if we take m+1=p—1 in
(3.1), we get

p—4 — 2
Cli= — pCn+ p 2(1’ . )c.cj,’_’zq + #CpiCo”
(3.3) !

r—4

= p z( - 2) C.Cosos (mod p9),

1

by the first of (1.7). Comparison of (3.2) and (3.3) yields

(») (p)

= — p(p — 1)Cp2 (mod p%),
which is equivalent to (1.13).

4. Proof of (1.14) and (1.15). We remark first that for >0 we
have

ety ELE\ m
4.1) 2t c,‘,"’=Z( )s,
=0 S

—C
?

by means of which it is easy to prove [5, p. 290]

T ( e,

In (4.1) and (4.2) we take
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k=p=m;
then (4.2) becomes
P
2657 = 3 =07 (2) e
=1

2 _(—p) —»)

=2p'C;3 — 2p'(p — 1)Cys
(—?)

+46'(6 — 1)(p — 2C%
4. y 2 (—-»
*-3) = 2°CY = 256 — (b — 2)Cps
— 490 — 1)(p — 2Cps

2 (—p)

=2pCp + *Pscpq (mod ?6)1

where we have used (1.8). This proves (1.14).
In the next place if we take k=—p, m4+1=p—1 in (3.1) we get

_ 2 . -2 _
Cot =92 (—1) (” . )c.c;’:’_.
su=()

N T I N
(4.4) = — pCpa+ pCos — pE(” . )C.CL_’Z’_.
1

—4

-2
Bt 1Y (” s )c.c,m (mod 29).

1

Comparison of (4.4) with (3.3) gives

(4.5) Cot =Cy4 — pCps (mod ),

which implies the first half of (1.15). The second half follows from
4.4).

5. Some of the above formulas can be simplified slightly. For ex-

ample it is easy to show that

p—4

— 2 1 r—4
(5.1) > (1’ ; )c.c,,_,_, = Elj CCps_s (mod p).

1

It is not evident whether the right member of (5.1) can be reduced
further. In this connection the formula

(5.2) Co= 5 (:") CCosr

1
may be mentioned. It follows from (5.2) that
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—2
Cp = — 2. CCypi, (mod p).
1
In the second place we recall that [6, p. 28]
B
(5.3) Cmoy =271 — 2m) — .
m
By means of (5.3), (1.13) for example becomes

CP =2"7(2"" — 1)p"B,s (mod p)),
while (1.14) becomes

_ _ 1
cy Y =plcy - m #'Bys (mod 2,
and so on.
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