
SOME COUNTEREXAMPLES IN THE CLASSIFICATION
OF OPEN RIEMANN SURFACES1

H. L. ROYDEN

Recently Ahlfors and the author [l] constructed a Riemann surface

of hyperbolic type which possessed no nonconstant harmonic func-

tions with a finite Dirichlet integral. In the first section we explore

some of the consequences of this example and construct a Riemann

surface on which the spaces HD and HBD have dimension ». In

the next section a bounded Riemann surface is exhibited which has

no HD functions on it which vanish on the relative boundary, while

it has a nonconstant HD whose normal derivative vanishes on the

relative boundary. In the last section we use a refinement of the

method in [l] to construct a Riemann surface admitting a non-

constant bounded harmonic function, but no nonconstant harmonic

functions with a finite Dirichlet integral, thus demonstrating that

the classes Ohb and Ohd are distinct.

1. Consider a sequence 1/2 <ri< • • ■ <r„< • • • < land the seg-

ments

*       (rn-á r è rn+i,

\e = 2irh-2~n, 0 | K 2".

We divide each A¡¡ into 2n subsegments A¡¡'* of equal logarithmic

length and form a Riemann surface W by identifying the left edge

of Aj1* with the right edge of A£+M, where it is to be understood that

Ä+k is reduced to its remainder mod 2". It was. shown in [l] that W

has no nonconstant harmonic functions with a finite Dirichlet integral

defined on it, provided

1
sup 2" log — = oo.

rn

Let V be the surface formed by removing the circle K:r<\/2

from W, and denote the circumference r = l/2 by R. We use HN

= HN{V) to denote the space of harmonic functions on V which

have a finite Dirichlet integral and whose normal derivative vanishes

on R and use HO = HO{V) to denote the space of those functions

which have a finite Dirichlet integral and which vanish on R.
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By Theorem 10 of [2] the space HBD(W) of those harmonic func-

tions on W which have a finite Dirichlet integral and are bounded is

isomorphic to

TO(F) + HO(K)

and to

HN(V) + HN(K).

Since W has a Green's function, we include the constants in HBD

by convention. Hence HBD consists of the constants alone and is

thus one-dimensional. The compactness of K implies that HO(K)

and HN(K) contain only the function zero. Remembering that HBD

is dense in HD in the sense of the Dirichlet metric [2], we also have

HD one-dimensional and hence:

The spaces HO(V) and HN(V) have dimension one. Consequently

HO(V) consists of multiples of log (r/2) while HN(V) consists of con-

stants.

If we reflect V in the circle R, we obtain a surface W2 on which the

space HD has dimension 2. Thus if m is harmonic and has a finite

Dirichlet integral we must have

m = Ci + C2 log r.

Similarly, if we start from the complex sphere from which m + 1

circular disks have been removed and attach a replica of V in place

of each disk, we obtain a surface Wn with the property that HBD(Wn)

is «-dimensional. Thus:

For each integer n there exists a Riemann surface Wn on which the

spaces HD(Wn) and HBD(Wn) are n-dimensional.

2. Consider a sequence 0< 771 < • • • <r¡n< • • • <l,setJ7_„ = ~V»,

and form the segments

A. (Vn  á   y   ^  Vn+1,

\x = (h + 1)2-1»',      0 ^ h ^ 2'»l - 1.

We divide each A¡J into 2" subsegments Aj'* of equal lengths and

construct a bounded Riemann surface V from the interior of the

rectangle \y\ ¡£1, Ogx^l, by identifying the left edge of Aj"* with

the right edge of A^"1"*-*, where here it is understood that h+k is re-

duced to its remainder mod 2|n| —1. The relative boundary R of V

consists of the segments ¡e = 0 and se—1.

Let m be a harmonic function defined on V which has a finite

Dirichlet integral and vanishes on R. Then, given 5>0, there is a set



19531 CLASSIFICATION OF OPEN RIEMANN SURFACES 365

Et of measure greater tfian 1 — S such that

œ*+©><- \dy)

for xG-E«. Now

a« du     \2— dy)  ^ {y2 - yi)M,

by the Schwarz inequality, and hence there is a function l{x) such that

lim u{x, y) = l{x)
»->i

uniformly for xG-E«. Thus for e>0, we may choose N so that l{x)2

^u{x, y)2+e for all xC.Es and all y ^r¡if.

Since the right edge of the interval Aj'* is identified with the left

edge of A£,ä, we have

/' 2~" du fx du
— dx+ I — (

0 OX J (A+D2-"   OX

for (A+l)2-"ga;á(A+2)2-B and for y in the projection of A,"*. By

the Schwarz inequality

C2~~ /du\2 rx /du\2
u{x,y)2^2-»\        ( — Id*+ 2- I ( — Ida;,

•/ 0 VOX/ J (n+l)2—   \dx/

whence

.[ü+ü> \dy)

For n^N and x in /„, the intersection of Et with the interval

(A + 1)2— ̂  * ^ (A + 2)2-",

we have also

2       /A.A 2-

'W!S2-"'/.'[(s)'+©>

Integrating with respect to y in the projection Ph of A^* gives

X/.,[©'+©l**
+ 2--()?n+1 - 17»).

+ £.
\dy/

2-«(,B+1 - ,„)/(*)2 ^ 2-»+» ,
\oy>
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Integrating with respect to h in /„ gives

i-«*« - *>/.■»* s 2—/fi /; [Q'+ (|)'] «,
+ €2-2"(77n+1 - r,n).

Thus (if we put 1 = 0 outside Es)

/, 1-2-W 2»—2 /»Z2dz g X   (Vn+i — Vn) I    /2¿#
2-" A-l J Ih

+ «0?n+l  —  l?n).

Therefore

/i 1-2-JV
/2¿* á 2-»+1Z)(m) + «(îf^+i - ?»)•

Summing for m ̂  iV gives

/. 1-2-W

f2¿* ^ 2-^+2Z)(m) + e(l - VN).
t-!f

If we let ?;„ converge to one so slowly that

sup 2"(1 - 17„) = »,

then

f  Pdx < e,
Jo

and since the left-hand side is independent of «,

f  IHx = 0,

hence / = 0 almost everywhere in Et. Since 5 is arbitrary we must have

lim u(x, y) = 0

for almost all x in [0, l]. Similarly

lim u(x, y) = 0

for almost all # in [0, l].
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For almost all x we then have

'"du
— dy

-lay

and by the Schwarz inequality

*** £[©+©>-**

But p, is summable since

/p{x)dx = 2D{u).
o

m{y) =  |    u2dx
o

Hence

<y) = f
Jo

is continuous and m{i) =m{ — 1) =0. Moreover

J'1    du      I f1    du
u — dx\     — 2 1    « — dx

o       dy       'v=¥j      J o       dy

since w is a harmonic function which vanishes for # = 0 and # = 1.

Thus m'{y) is increasing whence w(y) is convex. But m{y) must

vanish identically in the interval — 1 áy á 1, since it is non-negative,

convex, and vanishes at the end points. Hence u=0.

The function u=y is single-valued on V and has a finite Dirichlet

integral, while du/dn = 0 on R. Thus we have the following result.

On the bounded Riemann surface V the class HO is empty, while

there is a nonconstant harmonic function with a finite Dirichlet integral

whose normal derivative vanishes on the relative boundary.

3. We form a Riemann surface W in the strip \y\ ^1 by putting

in replicas of V in each rectangle n^x^ra + l. Let « be a bounded

harmonic function with a finite Dirichlet integral defined on W.

Then a slight modification in the argument of the preceding section

shows that

lim u{x, y) = c
»-i

for almost all x, and
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lim u(x, y) = c'
tl->-l

for almost all x.

Without loss of generality we may take c' = 0. Then

/»  du— dy
-i dy

and by the Schwarz inequality

/"/du\2 rl/du\2

Since

f  m(*) ̂ D(m) < =0,
«/_„

u is summable and so

/-
M(*i y)2¿*

-00

m(

exists and is continuous for — 1 ̂ y ^ 1. Also we have c2^ju(¡c), whence

c must be zero in order for p. to be summable on (— », »). Hence,

w(yi) =m(y2) =0. By the Schwarz inequality we have

(//|"^l"y) sIf"'d*dyff(T)d"'ydy\ /       J J J J   \dy/

= D(u)2 < ».

Thus by the Fubini theorem

1 f°    du
mÁy) — — I   m — dx

2 J_„    dydy

exists for almost all y and

1 r°° ry% du
m(y2) — tn(yi) = — I      I     m — dydx

2 J _w J Vl dy

1   /•« /•«• 3m

¿ J v, J -a, dydy

/• 1/2wi(v)<fy,
»,
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whence m is absolutely continuous and

m! = mi   a.e.

Let yi and y2 be two values of y for which mi exists, and take N so

large that yi<r¡tr, y2<i]N. Since

//©+©"**
<  oo

dy/

we can find an arbitrarily large x0 such that the fractional part of x0

lies between zero and 2~N and such that

< —
\dy/ J 2/[©'+©>

on the two segments x= ±xa. On these segments

a I a« I   V      r/àu\2
k\ir)S2JUdy<"

and so

Id«
dy < €.

/!

We also take ¡to so large that

JJ\x\>HWdx)      \dy) ]       y<

f da: < for y = yi, y2.

and

du
u —

dy

Since the fractional part of x0 lies between zero and 2~N, the region ß

on W' for which \x\ <x0 and yi^y^y2 has as its boundary the seg-

ments |*| <*o, y=yi, yi and the segments yi<y<y2, |*| = Xo. Thus

by Green's theorem

/du      Ç         du           Ç au
m — =1       m — dy —  I u — dy

dn     J x=x0    dx J i_i0     dx

/'du r du
m — dy —  I        u— dy

y=y¡        dX J y_vi âX

where the ranges of integration are yx^y^y2, —xoúx^xo-
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< (2Jf + 3)e.

Thus

| Da(u) - mi{y2) + mi(y2) \ < 2Me + 2«

where Ai is a bound for \u\. Consequently

. Jd\d~x)+\d-y)rxdy-miiy2)+Myi)

The left-hand side must be zero since it is independent of e, and so

/.*> f"»r/du\2    /d«\H

From this and the fact that

m(y) =  I    mi(y)dy

we conclude that m(y) is convex. As a result /w(y)=0 in the interval

— 1 áy á 1, since it is a non-negative convex function vanishing at the

ends of the interval. This implies m = 0, and because of the identity

Ohd = Ohb we have the following proposition:

The Riemann surface W' has no nonconstant harmonic functions on

it with a finite Dirichlet integral, while the function u=y is a harmonic

function which is defined, single-valued, and bounded on W'.
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