SOME COUNTEREXAMPLES IN THE CLASSIFICATION OF OPEN RIEMANN SURFACES¹

H. L. ROYDEN

Recently Ahlfors and the author [1] constructed a Riemann surface of hyperbolic type which possessed no nonconstant harmonic functions with a finite Dirichlet integral. In the first section we explore some of the consequences of this example and construct a Riemann surface on which the spaces HD and HBD have dimension n. In the next section a bounded Riemann surface is exhibited which has no HD functions on it which vanish on the relative boundary, while it has a nonconstant HD whose normal derivative vanishes on the relative boundary. In the last section we use a refinement of the method in [1] to construct a Riemann surface admitting a nonconstant bounded harmonic function, but no nonconstant harmonic functions with a finite Dirichlet integral, thus demonstrating that the classes O_{HB} and O_{HD} are distinct.

1. Consider a sequence $1/2 < r_1 < \cdots < r_n < \cdots < 1$ and the segments

$$\Delta_n^h: \begin{cases} r_n \leq r \leq r_{n+1}, \\ \theta = 2\pi h \cdot 2^{-n}, \end{cases} \qquad 0 \leq h < 2^n.$$

We divide each Δ_n^h into 2^n subsegments $\Delta_n^{h,k}$ of equal logarithmic length and form a Riemann surface W by identifying the left edge of $\Delta_n^{h,k}$ with the right edge of $\Delta_n^{h+k,k}$, where it is to be understood that h+k is reduced to its remainder mod 2^n . It was shown in [1] that W has no nonconstant harmonic functions with a finite Dirichlet integral defined on it, provided

$$\sup 2^n \log \frac{1}{r_n} = \infty.$$

Let V be the surface formed by removing the circle K:r<1/2 from W, and denote the circumference r=1/2 by R. We use HN=HN(V) to denote the space of harmonic functions on V which have a finite Dirichlet integral and whose normal derivative vanishes on R and use HO=HO(V) to denote the space of those functions which have a finite Dirichlet integral and which vanish on R.

Presented to the Society, September 5, 1952; received by the editors July 18, 1952.

¹ Work sponsored by the Office of Naval Research under contract N6ori-106 Task V.

By Theorem 10 of [2] the space HBD(W) of those harmonic functions on W which have a finite Dirichlet integral and are bounded is isomorphic to

$$4O(V) + HO(K)$$

and to

$$HN(V) \dotplus HN(K)$$
.

Since W has a Green's function, we include the constants in HBD by convention. Hence HBD consists of the constants alone and is thus one-dimensional. The compactness of K implies that HO(K) and HN(K) contain only the function zero. Remembering that HBD is dense in HD in the sense of the Dirichlet metric [2], we also have HD one-dimensional and hence:

The spaces HO(V) and HN(V) have dimension one. Consequently HO(V) consists of multiples of $\log (r/2)$ while HN(V) consists of constants.

If we reflect V in the circle R, we obtain a surface W_2 on which the space HD has dimension 2. Thus if u is harmonic and has a finite Dirichlet integral we must have

$$u = C_1 + C_2 \log r.$$

Similarly, if we start from the complex sphere from which n+1 circular disks have been removed and attach a replica of V in place of each disk, we obtain a surface W_n with the property that $HBD(W_n)$ is n-dimensional. Thus:

For each integer n there exists a Riemann surface W_n on which the spaces $HD(W_n)$ and $HBD(W_n)$ are n-dimensional.

2. Consider a sequence $0 < \eta_1 < \cdots < \eta_n < \cdots < 1$, set $\eta_{-n} = -\eta_n$, and form the segments

$$\Delta_n^h: \begin{cases} \eta_n \leq y \leq \eta_{n+1}, \\ x = (h+1)2^{-|n|}, \quad 0 \leq h \leq 2^{|n|} - 1. \end{cases}$$

We divide each Δ_n^h into 2^n subsegments $\Delta_n^{h,k}$ of equal lengths and construct a bounded Riemann surface V' from the interior of the rectangle $|y| \le 1$, $0 \le x \le 1$, by identifying the left edge of $\Delta_n^{h,k}$ with the right edge of $\Delta_n^{h+k,k}$, where here it is understood that h+k is reduced to its remainder mod $2^{|n|}-1$. The relative boundary R of V' consists of the segments x=0 and x=1.

Let u be a harmonic function defined on V' which has a finite Dirichlet integral and vanishes on R. Then, given $\delta > 0$, there is a set

 E_{δ} of measure greater than $1-\delta$ such that

$$\int_{-1}^{1} \left[\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial u}{\partial y} \right)^{2} \right] dy < M_{\delta}$$

for $x \in E_{\delta}$. Now

$$|u(x, y_2) - u(x, y_1)|^2 = \left(\int_{y_1}^{y_2} \frac{\partial u}{\partial y} dy\right)^2 \le (y_2 - y_1) M_{\delta}$$

by the Schwarz inequality, and hence there is a function l(x) such that

$$\lim_{y\to 1} u(x, y) = l(x)$$

uniformly for $x \in E_{\delta}$. Thus for $\epsilon > 0$, we may choose N so that $l(x)^2 \le u(x, y)^2 + \epsilon$ for all $x \in E_{\delta}$ and all $y \ge \eta_N$.

Since the right edge of the interval $\Delta_n^{h,h}$ is identified with the left edge of $\Delta_n^{0,h}$, we have

$$u(x, y) = \int_0^{2^{-n}} \frac{\partial u}{\partial x} dx + \int_{(h+1)2^{-n}}^x \frac{\partial u}{\partial x} dx$$

for $(h+1)2^{-n} \le x \le (h+2)2^{-n}$ and for y in the projection of $\Delta_n^{0,h}$. By the Schwarz inequality

$$u(x, y)^{2} \leq 2^{-n} \int_{0}^{2^{-n}} \left(\frac{\partial u}{\partial x}\right)^{2} dx + 2^{-n} \int_{(x+1)^{n-n}}^{x} \left(\frac{\partial u}{\partial x}\right)^{2} dx,$$

whence

$$u^{2} \leq 2^{-n+1} \int_{0}^{1} \left[\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial u}{\partial y} \right)^{2} \right] dx.$$

For $n \ge N$ and x in I_n , the intersection of E_i with the interval

$$(h+1)2^{-n} \le x \le (h+2)2^{-n}$$

we have also

$$l(x)^{2} \leq 2^{-n+1} \int_{0}^{1} \left[\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial u}{\partial y} \right)^{2} \right] dx + \epsilon.$$

Integrating with respect to y in the projection P^h of $\Delta_n^{0,h}$ gives

$$2^{-n}(\eta_{n+1}-\eta_n)l(x)^2 \leq 2^{-n+1}\int_{P^h}\int_0^1\left[\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2\right]dxdy + 2^{-n}(\eta_{n+1}-\eta_n).$$

Integrating with respect to h in I_n gives

$$2^{-n}(\eta_{n+1} - \eta_n) \int_{I_n} l(x)^2 dx \le 2^{-2n+1} \int_{P^h} \int_0^1 \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right] dx dy + \epsilon 2^{-2n} (\eta_{n+1} - \eta_n).$$

Thus (if we put l=0 outside E_{δ})

$$(\eta_{n+1} - \eta_n) \int_{2^{-N}}^{1-2^{-N}} l^2 dx \le \sum_{h=1}^{2^{n-2}} (\eta_{n+1} - \eta_n) \int_{I_h} l^2 dx$$

$$\le 2^{-n+1} \int_{\eta_n}^{\eta_{n+1}} \int_0^1 \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right] dx dy$$

$$+ \epsilon (\eta_{n+1} - \eta_n).$$

Therefore

$$(\eta_{n+1} - \eta_n) \int_{s-N}^{1-2-N} l^2 dx \le 2^{-n+1} D(u) + \epsilon (\eta_{n+1} - \eta_n).$$

Summing for $n \ge N$ gives

$$(1-\eta_N)\int_{2^{-N}}^{1-2^{-N}}l^2dx \leq 2^{-N+2}D(u) + \epsilon(1-\eta_N).$$

If we let η_n converge to one so slowly that

$$\sup 2^n(1-\eta_n)=\infty,$$

then

$$\int_{1}^{1} l^{2}dx < \epsilon,$$

and since the left-hand side is independent of n,

$$\int_0^1 l^2 dx = 0,$$

hence l=0 almost everywhere in E_{δ} . Since δ is arbitrary we must have

$$\lim_{y\to 1}u(x, y)=0$$

for almost all x in [0, 1]. Similarly

$$\lim_{y\to -1}u(x, y)=0$$

for almost all x in [0, 1].

For almost all x we then have

$$u(x, y) = \int_{-1}^{u} \frac{\partial u}{\partial y} dy$$

and by the Schwarz inequality

$$u(x, y)^{2} \leq 2 \int_{-1}^{1} \left[\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial u}{\partial y} \right)^{2} \right] dy = \mu(x).$$

But μ is summable since

$$\int_0^1 \mu(x)dx = 2D(u).$$

Hence

$$m(y) = \int_0^1 u^2 dx$$

is continuous and m(1) = m(-1) = 0. Moreover

$$m'(y_2) - m'(y_1) = 2 \int_0^1 u \frac{\partial u}{\partial y} dx \Big|_{y=y_2} - 2 \int_0^1 u \frac{\partial u}{\partial y} dx \Big|_{y=y_1}$$
$$= 2 \int_{y_1}^{y_2} \int_0^1 \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right] dx dy,$$

since u is a harmonic function which vanishes for x=0 and x=1. Thus m'(y) is increasing whence m(y) is convex. But m(y) must vanish identically in the interval $-1 \le y \le 1$, since it is non-negative, convex, and vanishes at the end points. Hence $u \equiv 0$.

The function u = y is single-valued on V' and has a finite Dirichlet integral, while $\partial u/\partial n = 0$ on R. Thus we have the following result.

On the bounded Riemann surface V' the class HO is empty, while there is a nonconstant harmonic function with a finite Dirichlet integral whose normal derivative vanishes on the relative boundary.

3. We form a Riemann surface W' in the strip $|y| \le 1$ by putting in replicas of V' in each rectangle $n \le x \le n+1$. Let u be a bounded harmonic function with a finite Dirichlet integral defined on W'. Then a slight modification in the argument of the preceding section shows that

$$\lim_{y\to 1}u(x, y)=c$$

for almost all x, and

$$\lim_{y\to -1}u(x, y)=c'$$

for almost all x.

Without loss of generality we may take c'=0. Then

$$u(x, y) = \int_{-1}^{y} \frac{\partial u}{\partial y} dy$$

and by the Schwarz inequality

$$u(x, y)^{2} \leq 2 \int_{-1}^{y} \left(\frac{\partial u}{\partial y}\right)^{2} dy \leq 2 \int_{-1}^{1} \left(\frac{\partial u}{\partial y}\right)^{2} dy = \mu(x).$$

Since

$$\int_{-\infty}^{\infty} \mu(x) \leq D(u) < \infty,$$

 μ is summable and so

$$m(y) = \int_{-\infty}^{\infty} u(x, y)^2 dx$$

exists and is continuous for $-1 \le y \le 1$. Also we have $c^2 \le \mu(x)$, whence c must be zero in order for μ to be summable on $(-\infty, \infty)$. Hence, $m(y_1) = m(y_2) = 0$. By the Schwarz inequality we have

$$\left(\int\int \left|u\frac{\partial u}{\partial y}\right| dxdy\right)^{2} \leq \int\int u^{2}dxdy \int\int \left(\frac{\partial u}{\partial y}\right)^{2}dxdy$$
$$\leq D(u)^{2} < \infty.$$

Thus by the Fubini theorem

$$m_1(y) = \frac{1}{2} \int_{-\infty}^{\infty} u \, \frac{\partial u}{\partial y} \, dx$$

exists for almost all y and

$$m(y_2) - m(y_1) = \frac{1}{2} \int_{-\infty}^{\infty} \int_{y_1}^{y_2} u \frac{\partial u}{\partial y} dy dx$$
$$= \frac{1}{2} \int_{y_1}^{y_2} \int_{-\infty}^{\infty} u \frac{\partial u}{\partial y} dx dy$$
$$= \int_{y_1}^{y_2} m_1(y) dy,$$

whence m is absolutely continuous and

$$m'=m_1$$
 a.e.

Let y_1 and y_2 be two values of y for which m_1 exists, and take N so large that $y_1 < \eta_N$, $y_2 < \eta_N$. Since

$$\int \int \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 dx dy < \infty,$$

we can find an arbitrarily large x_0 such that the fractional part of x_0 lies between zero and 2^{-N} and such that

$$\int \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right] dy < \frac{\epsilon^2}{2}$$

on the two segments $x = \pm x_0$. On these segments

$$\left(\int \left|\frac{\partial u}{\partial x}\right| dy\right)^2 \le 2 \int \left(\frac{\partial u}{\partial x}\right)^2 dy < \epsilon^2$$

and so

$$\int \left|\frac{\partial u}{\partial x}\right| dy < \epsilon.$$

We also take x_0 so large that

$$\int\!\!\int_{|z|>x_0} \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right] dx dy < \epsilon$$

and

$$\int_{|x|>x_0} \left| u \frac{\partial u}{\partial y} \right| dx < \qquad \text{for } y = y_1, y_2.$$

Since the fractional part of x_0 lies between zero and 2^{-N} , the region Ω on W' for which $|x| < x_0$ and $y_1 \le y \le y_2$ has as its boundary the segments $|x| < x_0$, $y = y_1$, y_2 and the segments $y_1 < y < y_2$, $|x| = x_0$. Thus by Green's theorem

$$D_{\Omega}(u) = \int u \frac{\partial u}{\partial n} = \int_{z=z_0} u \frac{\partial u}{\partial x} dy - \int_{z=-z_0} u \frac{\partial u}{\partial x} dy + \int_{y=y_0} u \frac{\partial u}{\partial x} dy - \int_{y=y_0} u \frac{\partial u}{\partial x} dy$$

where the ranges of integration are $y_1 \le y \le y_2$, $-x_0 \le x \le x_0$.

Thus

$$|D_{\Omega}(u)-m_1(y_2)+m_1(y_2)|<2M\epsilon+2\epsilon$$

where M is a bound for |u|. Consequently

$$\left| \int_{y_1}^{y_2} \int_{-\infty}^{\infty} \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right] dx dy - m_1(y_2) + m_1(y_1) \right| < (2M + 3)\epsilon.$$

The left-hand side must be zero since it is independent of ϵ , and so

$$m_1(y_2) - m_1(y_1) = \int_{y_1}^{y_2} \int_{-\infty}^{\infty} \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right] dx dy \ge 0.$$

From this and the fact that

$$m(y) = \int_{-\infty}^{\infty} m_1(y) dy$$

we conclude that m(y) is convex. As a result $m(y) \equiv 0$ in the interval $-1 \leq y \leq 1$, since it is a non-negative convex function vanishing at the ends of the interval. This implies $u \equiv 0$, and because of the identity $O_{HD} = O_{HB}$ we have the following proposition:

The Riemann surface W' has no nonconstant harmonic functions on it with a finite Dirichlet integral, while the function u = y is a harmonic function which is defined, single-valued, and bounded on W'.

BIBLIOGRAPHY

- 1. Lars V. Ahlfors and H. L. Royden, A counterexample in the classification of open Riemann surfaces, Annales Academiae Scientiarum Fennicae. Ser. AI.
- 2. H. L. Royden, Harmonic functions on open Riemann surfaces, Trans. Amer. Math. Soc. vol. 73 (1952) pp. 40-94.

STANFORD UNIVERSITY