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be equal by the Cauchy integral theorem (by [1] and a result in the
author’s dissertation not yet published).
Theorem 1 follows directly from Theorem 3.
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REMARK ON A FORMULA FOR THE BERNOULLI NUMBERS
L. CARLITZ

Some years ago Garabedian [1] proved the following formula:

(_l)k+l(k _I_ 1) k Arlk
(1) Biyr = ———2;—1—_7——'-20 (=D pyer (k2 0),

where the even suffix notation is employed for the Bernoulli numbers.
The proof of (1) made use of the sum of a certain divergent series.
We wish to point out that (1) is not new. It can be found (in some-
what different notation) in [3, p. 224, formula (68)].
It may be of interest to give a short proof of (1). We use the
formula [2, p. 28]

B
2 C, = 2k+1(1 — 2k+1
(2 k ( ) hr 1
where the C; are the coefficients in the Euler polynomial:

O mw-(s+ )= 5o

=0

Then in view of

4 Ei(x+ 1) + Ex(x) = 2xF,
we have
1 -1 k
5) Ey(x) = (1 + ? A) xk = Z (—1)22—2AsxF,
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If we take x=1 in (5) and use (3) and (4), we get

k
Ci= — 2*Ey(1) = — X (—1)22+Ar1%
3=0
Substitution in (2) leads at once to (1).
In a similar way we can prove
(DB &
= Tl—- Z (— 1) 2 ATOE,

r=0

(6) Biy
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