AN ADDITION THEOREM FOR SETS OF ELEMENTS OF ABELIAN GROUPS

H. B. MANN

Let G be a finite Abelian group, A, B sets of elements in G. By AB we denote the set of all elements of the form ab ($a \in A$, $b \in B$), by \overline{A} the complement of A in G, and by (A) the number of elements in A. We shall prove the following theorem.

THEOREM. If for the set A and every subgroup H of G

(1)
$$(AH) \ge (A) + (H) - 1$$
 or $AH = G$.

then for every set B

(2)
$$(AB) \ge (A) + (B) - 1$$
 or $AB = G$.

For the proof we need the following two theorems proved in [1].

(i) If A, B are sets of elements of a finite group G, then

(3)
$$(G) \ge (A) + (B) \quad \text{or} \quad G = AB.$$

- (ii) If G is a finite Abelian group $c \in G$, $c \notin AB$, then there exists a set $B^* \subset G$ such that
 - (1) $B*\supseteq B$,
 - (2) $\overline{AB}^* = cH$, where H is a sub-group of G,
 - (3) $(AB^*) (AB) = (B^*) (B)$.

PROOF OF THE THEOREM. By virtue of (ii) it is sufficient to prove the theorem for the case that $\overline{AB} = cH$ where H is a subgroup of G. Consider then the factor group G/H and let A', B' be the set of cosets of H contained in AH, BH respectively. Then by (i)

(4)
$$(G/H) \ge (A') + (B').$$

But (G/H)(H) = (G), $(B')(H) \ge (B)$, and by hypothesis $(A')(H) = (AH) \ge (A) + (H) - 1$. Multiplying (4) by (H) we therefore get

$$(G) \ge (A) + (B) + (H) - 1$$

and

$$(AB) = (G) - (H) \ge (A) + (B) - 1.$$

REFERENCE

1. H. B. Mann, On products of sets of group elements, Canadian Journal of Mathematics vol. 4 (1952) pp. 64-66.

THE OHIO STATE UNIVERSITY

Received by the editors August 11, 1952.