PERMUTATIONS IN A FINITE FIELD

L. CARLITZ

A polynomial $f(x)$ with coefficients $\in G F(q)$ is called a permutation polynomial if the numbers $f(\alpha)$, where $\alpha \in G F(q)$, are a permutation of the α 's. (For references see [2, Chap. 18].) In a letter to the writer, E. G. Straus has inquired whether all permutation polynomials can be generated by means of the special types

$$
\begin{equation*}
\alpha x+\beta, \quad x^{q-2} \quad(\alpha, \beta \in G F(q), \alpha \neq 0) \tag{1}
\end{equation*}
$$

For $q=5$, this was proved to be true by Betti; for $q=7$ the corresponding result was verified by Dickson [1, p. 119].

In this note we show very simply that this result holds for all q. Since the totality of permutation polynomials evidently furnishes a representation of the symmetric group on q letters, it will suffice to show that every transposition (0α) can be generated by means of the special polynomials (1); here α denotes a fixed nonzero number $\in G F(q)$. We consider the following polynomial

$$
\begin{equation*}
g(x)=-\alpha^{2}\left(\left((x-\alpha)^{q-2}+\frac{1}{\alpha}\right)^{q-2}-\alpha\right)^{q-2} \tag{2}
\end{equation*}
$$

Then in the first place we easily verify that $g(0)=\alpha$ and $g(\alpha)=0$. Secondly if $\beta \neq 0, \beta \neq \alpha$, then

$$
\begin{aligned}
g(\beta) & =-\alpha^{2}\left(\left(\frac{1}{\beta-\alpha}+\frac{1}{\alpha}\right)^{q-2}-\alpha\right)^{q-2} \\
& =-\alpha^{2}\left(-\frac{\alpha^{2}}{\beta}\right)^{q-2}=\beta
\end{aligned}
$$

so that β is carried into itself. This shows that the polynomial (2) does indeed effect the transposition (0α), and therefore our result follows.

We may state the following
Theorem. Every permutation on the numbers of $G F(q)$ can be derived from (1).

References

1. L. E. Dickson, The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group, Ann. of Math. vol. 11 (1896-97) pp. 65-120.
2. -, History of the theory of numbers, vol. 3, Washington, 1923.

Duke University
Received by the editors December 6, 1952.

