NOTE ON SOME PARTITION IDENTITIES
L. CARLITZ

1. Introduction. In a recent paper, Newman [4] states the formulas

(1.1) f_‘,pz(llm + 10)x* = i (1 — z1m)2,
(1.2) éimlm + 20)z" = — 11 I:i (1 — x1ms,
(1.3) }:?,p,(um + 28)zn = — f:I(l _ gy
(1.4) Z:Ipo(3lm + 240)x~ = 9611:1 (1 — amm)s,
where

T — =% = 3 puimpen.

n=l m=0
We wish to point out that results of this kind can be obtained in
a very elementary way, namely, by using a method employed by
Ramanujan in proving the formula p(5m-+4)=0 (mod 5) (see for
example [2, p. 87]). We shall prove the following formulas. Let r be
prime. If r=3 (mod 4), r >3, then

n=1

(1.5) i pa(rm + ro)x™ = fI (1 — zr)2,
M0

where ro=(r*—1)/12.
If r=3 (mod 4), r=3, then

(1.6) i pe(rm + r)xm = r? f[ (1 — arn)s,

mm=0 A=l

where r,=(r2—1)/4.
If r=5 (mod 6), then

(1.7) > pa(rm + ro)am = — o JT (1 — 2,
mm=0 ne=l
where 7,=(r2—1)/6.
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If =5 (mod 12), then

(1.8) > palrm + rgzm = — T (1 — a8

m=0 n=1

where ro=(r2—1)/12.

It is clear that (1.1) is contained in (1.5), (1.2) in (1.7), (1.3) in
(1.8), (1.4) in (1.6); the case r=35 of (1.7) occurs in [3]. We also re-
mark that (1.5), - - -, (1.8) can be put in somewhat sharper form;
for example in place of (1.5) we can state

i p2(r’m + ro)am = ﬁ 1—2am= i pa(m)x™.

me=0 n=1 m=0
In other words
pa(r™m + 1o) = pa(m);  pa(rm + r)) =0 for rim.
Similar results hold for the other functions.
2. Proof of (1.5). By Euler’s formula
(2.1) x'f[ (1 — 27 = i (= 1)W+kgethGAD 2 k@RED 12,
=1 —

where s is to be assigned. The exponent on the right is divisible by
r provided

(2.2) (6k + 1) + (6% + 1)? + 2(12s — 1) = 0 (mod 7).

If we take s as the least positive integer such that 12s=1 (mod 1),
then by the hypothesis on 7 it is clear that (2.2) implies r|6h+l,
r| 6k+1. Thus with a little manipulation (2.1) yields

3 palrm + 7 — zm = 1 (1 = 2,

m=0 —
where
(2.3) =Ty
12r 12
Since
re+r—s=lzs_1 r? =r2—1’

— =
12 12 12

(1.5) follows at once.
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3. Proof of (1.6). Using Jacobi's formula we have

eI - 2
3.y 3
= X (—1)MEQ2h 4 1)(2k + 1)zrHhHD 24k 2,

R, k=0
The exponent on the right is divisible by r provided
3.2 2h 4+ 1)24+ 2k + 1)2 + 2(4s — 1) = 0 (mod 7).
If we choose s as the least positive integer such that 4s=1 (mod 7),
(3.2) implies r| 2h+1, 7| 2k+1. Thus, very much as above, (3.1) yields

L

i ?G('m +r— s)x"' = r2x°H (]_ — xrn)c’
ma==0

n=1

where
8 — 1 r
e = —""10
8r 4
Since
n 8 —1 1r? r2—1
re+r—s= —_— - =
8 4 4

(1.6) follows at once.

4. Proof of (1.7). Using Euler’s and Jacobi's formula we have

4.1) x‘fI 1—- 2zt = _1- i (—1)r+E(2k 4 1) g HhBAHD 24+ k(R+D /2,
n=l 2 b, ke=—o0

The exponent on the right is divisible by 7 provided
4.2) 6k 4+ 1)2 + 3(2k + 1)2 + 4(6s — 1) = 0 (mod 7).

We choose s as the least positive integer such that 6s=1 (mod 7).
Since —3 is a quadratic nonresidue of 7, it follows from (4.2) that
r|6h+1, r| 2k+1. A little attention must now be paid to the sign in
the right member of (4.1). We find without much trouble that (4.1)
implies

4.3) i pirm + r — s)x™ = — rx‘ﬁ (1 — xrm)4,
M0

n=1

where
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s—1
e=
6r

+ 11
!

Since
s—1 r2—1
s T "%
it is evident that (4.3) reduces to (1.7).

5. Proof of (1.8). We return to (2.1) and (2.2). Since r=1 (mod 4)
we can no longer assert that rl 6h+1, rl 6k+1, but only that (65+1)2
+(6k+1)?=0 (mod p). Changing the notation slightly, consider

(5.1) h = au — by, = av + bu,

where r =a?+b% and h=k=1 (mod 6). Since r=5 (mod 12), we may
suppose that ¢=1, b= +2 (mod 6). If b=2 (mod 6), consider
(5.2) 4 = — (a® — b®)kh — 2abk, rk’' = — 2abh + (a® — b?)k.

Then by (5.1), (5.2) reduces to h’'= —au—>bv, k' = —bu-+-av, so that
k' and k' are integers; moreover h'*+k’2=h2+k2 In the next place
(5.2) implies

ret+r—s= )

S =3h — 4k = — 1, kK =1 (mod 6),
Skk=—4h+3k=—-1 ¥ =1

On the other hand (5.2) implies

(5.3) K= —h, k' = k (mod 4).

It follows that the terms in the right member of (2.1) corresponding
to (h, k) and (&', k') cancel.

Next, if b= —2 (mod 6), we change all signs in the right members
of (5.2). The details are much as before; in particular (5.3) becomes
h'=h, ¥ = —Fk (mod 4). Thus once again corresponding terms cancel.

Now consider a pair (k, k) with h2+k2=m, where m is fixed, r| m,
h=Fk=1 (mod 6). Suppose first r}k. Then if #}F’, it is clear from the
above that the corresponding terms in (2.1) cancel. On the other
hand, when r| k, then it follows from the above discussion that we
can simultaneously consider the correspondence (5.2) together with
the second correspondence (b= —2). In other words we have in this
case (r|h) a (2, 1) correspondence. Returning to (2.1) we see that

i prrm +r —5) = — x‘fI (1 — zm)e,

m=0 n=1
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where ¢ is determined by (2.3). The proof of (1.8) is now completed
in exactly the same way as in (1.5).

6. Another formula. Newman also states the formula

(6.1) 2 ps(Sm)zm = L (1 — 281 — o577,

ma=0 na=]
which he notes had been found (but not published) by D. H. Lehmer.
It may be of interest to point out that (6.1) can be obtained easily
from the identity.

0 (l_xn)s 0 m xm
(6.2) ,.I..Il_——l—x"‘ -1-5;_)1(?)1_xm-

The formula (6.2) is due to Ramanujan; Bailey [1] showed recently
that it is a consequence of well knpwn formulas for the Weierstrass
elliptic functions.

Since the right member of (6.2) equals

1—-5 Z (ﬁ)mx"",
m,rm=l 5
it follows that

> pu(smyz=TL (1 = 2971 = 1 - si(ﬁ) =

mw=0 Nl M=l 5 1 - x""

- fI (1 —_— xﬁn)s(l — xzsn)—1.

n=1

Replacing x* by x we get (6.1).
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