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The two qth order Euler transforms of the sequence An

*-o \« + 1/

and

Bi = iq+ir±(nk)rkAk

are equivalent for q è 0 in the sense that if either has a limit as n—* oo

the other has the same limit [l, p. 180].1 For double sequences the

corresponding transforms are

(1)   ^» = ̂  + 1)      £U + iA*+Jg      Ahk'

.        /    ,  «X-»-» \r (m\(n\ »+»-*-*(2) »_-(,+ «       ¿(J(Jt A»

This paper is concerned with two theorems regarding these trans-

forms. Throughout the discussion q è 0.

Theorem 1. If Aim has a limit as m, »—*«>, then 5J,B Aas that same

limit and if:Bmn has a limit and is bounded, then A^ has that same limit

but there do exist sequences for which 2C has a limit but for which

limm,„,w Al„ does not exist for any q^O.

The relation

(3) Bin = ?V„_i.„-i - qiq + DOC-i + ¿Li.„) + (? + l)*Aln

may be verified by substitution from (1) into the right-hand side.

This relation may be written in the form

Bmn =  q C<4m-l,n-l — Am,n-X — Am-X,n + Amn)

~  qiAm.n— X + Ant— l,n ¿Amn) + Amn.
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1 Numbers in brackets refer to the references at the end of the paper.
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From  this relation  (4)  it follows   that if   lim*,,,,.,,, A"m = A,  then

Ummin-.oo -ömn = <A •

Relation (3) can be used to express Al„ in terms of 5J,„. First write

(3) in the form

(q +   1)  Aqmn  =   Bmn +  q(q +   l)04fc,,n-l + ¿m-1,«)   —   q ¿t»-l,a-l.

In this replace ^4m,n_i and /!«_!,„, by the values which this relation

gives for them. This yields

(q + 1) A9mn = B9mn + q(q + 1)    (BQm,n-i + Bqm-\,n)

1        q q g

+ q (Am,n-Ï + -ílm-l.n-l + j4m-2,n)

—  q(q+  i)     (A9m-i,n-2 + ^l_2,n-l).

Successive repetitions of this procedure lead finally to the relation

m,n   /      n     \ m+n—h—k

(5) (<7+LML=  Z(-xt) 2¿*.
A,*=0 \? +   1/

Relation (5) expresses A%„ as a transform of the sequence B*,n. The

coefficients of the transformation satisfy the conditions for regularity

[3, p. 23]. Hence if B^ has the limit A and is bounded, then A'mn also

has the limit A.

To see that there exist sequences for which the transform Bl,n has

a limit but for which limm,«^.,, A%„ does not exist for any g = 0 con-

sider the sequence ^4m„ = (-l)np2m+"_1{n(p+l)+p}, p>l. For this

sequence one may readily verify by substitution into (2) that Bvmn = 0

whenever «>1. Thus for this sequence the transform B„„ has the

limit 0. But by substituting into (1) and simplifying one obtains

(n+í\ (p+í\ (Lzf\n
\q+ 1/  V   p*   )  \q+ 1/

and for p> 1 this does not have a limit for any g = 0. This completes

the proof of Theorem 1.
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Theorem 2. Let Amn= Em-o«**- If

1 m-n ^ /m\/n\

has the limit A as m, «—><», (2) Ann is bounded and

(3)     lim   im1'2 + nV2)imnyi2amn = 0,
m.n—»m

¿Ae« Amn also has the limit A as m, n—>oo.

Form the difference

l im-in i^i" /4ot \ /4«\
Bim,in — A2m,2n  =   2 ¿—i    I Jl ) iAhlc  — ¿4

A,fc=,0  \  h / \k /
2m,2n

Separate this difference into 9 parts Si, S2, ■ ■ ■ , Sg corresponding

respectively to the intervals of summation

/0 | Â g >»\              /0 S H »\ / 0 ^ A ̂  m \

VO^A^»/'            \m<A<3»/' \3n^ k^4n)'

(m < A < 3w\            /w < A < 3w\ /«* < A < 3w\

Oá*á»/            \»<A<3»/' \3»gAg4»/'

/3»î g A g 4w\          /3m g A ̂  4»A /3w gH 4w\

VOáAá»/'        \»<A<3»/' \3n¿H4»/

Since

2-«-E(       = 1,

lim 2-4"tE(       ) = 0 [2, p. 511],        Iim2-4»'E(       ) = 0,
i»-»» *=o \   A  / m-»» »=3m \   A  /

and 4m„ is bounded it follows that each of the parts Su S2, S3, 54,

S6, Sy, Sg, So has the limit zero as m, »—> oo. Thus if S6 has the limit

zero it will follow that the difference B14mM — A2m,2n has the limit zero.

Let Qm.n denote the largest of the numbers ((m+A)1/2 + (w+A)1/2)

•((m+A)(«+A))1/2- |am+A,n+t| for m<h<3m and n<k<3n. Then for

all A, k in these intervals

*■ A fc

^ i\2m- h\ -3n + \2n- k\ -2m)
im1'2 + nV^imn)1'2



586 G. N. WOLLAN [Augmt

if mn^O. Hence

.»-ijn-i   /^n\ßn\
|S,|á2-"-«"       Z       (   .   )( J(|2«-*|.3n

Il                                          \¿mn
2n- k\ -2m)-

1          (f»1'2 + n1'2)-(«M)1'2

á -¡3» 2-4-   Z   \2m- h\ •(       )
\ Jk-m+1 \   h  /

«Ç;»  . .     /4»\) Qmn

) • (ww)

But

and

«t;1 , /4m \ \Z /4m \
£     2«-*|-(—)<2i:0*-Â)(       )
.m+l \   «   / fc=0 \   h   /k-m+l

1^ /4m \
£(2m- A)(       )

Hence

5»| < <6mn 2-*m(      )    + 4mn 2-«»(     )\-—-
1        \ \2m/ \2«/j  (w1"+»1'2)(w»)1'2

Since

2-tn( MW(xn)-"2

[2, p. 385] it then follows that

|S6| < {6»tn(21rm)-1's(l + «m)

+ 4wn(2*-»)-1'2(l + «î„)}
(m1'2 + H1'2) -(m») wt

where em—»0 as m—» « and e„—*0 as n—> ». Thus
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/6»»'*(1 + en) + 4m1'2(l + en)\

Is-1 < t ^TT+T^ | «-

Since the quantity in braces is bounded and Qmn—»0 it then follows

that 5&—»0 as m, »—>«>. Hence the difference .Bj»ito—i42m,2n has the

limit zero. With only slight modifications of this argument it can be

shown that T^i^—^2m+i,in, B\m4n—-42m,2n+i, and B^^ —.42m+i,sn+i

have the limit zero. The proof of the theorem is then complete.
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