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1. Introduction. In the present paper we shall obtain necessary and

sufficient conditions that a distribution function Fit) contain the

normal distribution

t1    c
Git) = — e-"*du

as a factor in the sense that2

(1.1) Fix) =  I G(x - y)daiy), - oo < x < oo,

where aiy) is also a distribution function. If we denote the derivative

of F(x) by fix), the problem is clearly that of representing /(x) in the

form

(1.2) /(x)=J_J' e-^daiy), —   oo   < X <   oo.

Several writers (for example see [l] and [4]) have obtained results

from which criteria for our problem follow, but the conditions involve

the analytic continuation of fix), or are otherwise cumbersome. We

give a new solution as follows.

Theorem. In order that a function fix) defined on ( — =o, oo ) have the

form (1.2), where aiy) is a distribution function, the following conditions

are necessary and sufficient :

(i) ffix)dx = l;
(ii) fix)EC" on i - oo <x< oo);

(iii)   the series

4*ä!

converges to a non-negative value uniformly on — oo <x< oo for each

value of t, O^t <1.
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1 All integrals which occur henceforth are doubly infinite, and their limits are

omitted. Similarly in all sums the limits are to be taken from 0 to °o.

* This can be replaced by uniformity in finite intervals without altering the proofs.

It would be most desirable to drop the requirement of uniformity altogether.
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As an immediate consequence we have the following corollary:

Corollary. In order that the distribution function F(t) have G(t) as a

factor it is necessary and sufficient that it be absolutely continuous and

that its derivative f(t) have properties (ii) and (iii).

Our method also leads to the following explicit determination of

a(x) in terms of F(x) :

1 tk
(1.3)    — [a(x + 0) + a(x - 0)] - lim Z (-)*F<2*>(z)

2 «-i 4*£!

A very interesting account of the developments which suggest con-

ditions of the form (iii) is given by Widder [4].

2. The necessity. Suppose that/(x) has the form (1.2). Then it ob-

viously has property (i). That it has property (ii) follows from the

fact that extf(x) is a bilateral Laplace transform converging for

— 00 <x < 00. In fact/(x) is entire and we may differentiate under the

integral any number of times [4]. Therefore

(2.1) /<»>(*) = — f H2k(x - y)e-^^da(y),
irlllJ

where Hn(x) is the »th Hermite polynomial, defined by

Hn(x) = (_).,»* (-^V**).

Now form the formal series

£(-!)*/(•«(*)-ÍL
4*ä!

(2.2)

- ~ ( Z (-i)kH2k(x -y)^— e-l^da(y).
rlliJ 4kkl

This step is justified if we establish the finiteness of

f Z I n»(x - y) I — er^^da(y),

a fact which follows directly from the inequality [2, p. 236]

(2.3) \Hn(x)\ =¿2*[(2¿)!]i/Vs'2.

We now make use of the following identity [2, p. 371]:
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_ Hnix)/w\n ( x2w2 \
E —~(t)  = (l + ^2)3/2(l + ^+^)exp (—--),

ml   \ 2 / \1 + w2/

where m= [n/2]. Replace w by —w, add the resulting equation to

this one, and replace w by it112. In this fashion we obtain the identity

_^ /72n(x)  t» /       xH \
E (-1)"—r1 - = (l - 0-1/2exP(- —-).

»!      4" \     1 — //

It follows that the right-hand member of (2.2) is

(2.4) - f e-i'-rti'My),

where r = \—t; and this is non-negative, since da^O. This estab-

lishes the necessity of (iii) except for the assertion about uniformity.

To fill in this lacuna apply (2.3) directly to (2.2). We get

\ßmix)\ ¿ B2k[i2k)ï]1>2 fV<*-*>2'2¿a(y)
(2.5) J

á B2"[(2a)!]1'2

since fda = l. The series occurring in (iii) is then dominated by

t"
E[(2¿)!]1/2

2*A!

which converges when 0^/<l.

3. The sufficiency. Define the function m(x, t) by

(3.1) uix, r) = E(-l)*/(24,(*) (1
4*¿!

According to (iii) the convergence of this series is assured for

0 <t ^ 1. Now let to be fixed. In view of the assumption of uniformity

in x it follows that

, ,   (1   -  T0)*
(3.2) /<2*>(x) < 1

11     4**!

for k^kiro). Now form the series

^i ,   (1 -0*
(3.3) E  /(2fc+2>(x) •

4kkl

According to (3.2), if we choose 0 <ra<r the new series is dominated
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(from some term on) by

1 4*+1(¿+ 1)!/1 - r\»

1 - T0 4**! \1 - to)   '

This establishes the uniform convergence of (3.3) as a series of func-

tions of x.

As a consequence we may differentiate the series in (3.1) the requi-

site number of times to obtain the heat equation

d2u       1   du
- =-; -   oo   <  x <   oo, 0 ^ T <   1.
dx2       4   ¿V

Now, by condition (iii) the function u(x, t) is non-negative. There-

fore, by an important theorem of Widder [5], u(x, t) must take the

form4

u(x, t) = —- Í e-(*-»)ilTda(y),
(tt)U2J *(irr)

where a(y) is an increasing function. According to (3.1) we have

limr_i u(x, r) =f(x). Hence

fix) = lim- I  e-(x-v)*lTda(y).
r_i^'2J

Since a as a set function defines a completely additive measure, we

may invoke Fatou's lemma to assure us that this last integral con-

verges at t = 1. Therefore by Lebesgue's principle of dominated con-

vergence we may take the limit under the integral to obtain (1.2).

It remains only to show that fda=l. But, according to (1.2),

ff(x)dx = fda, and by (i) this has the value 1.

4. The inversion formula. Suppose now that F(x) does have the

representation (1.1). Then

F(x) = f a(x- y)dG(y) = — j e-<*-»>*a(y)dy.

Note that a(y) is a bounded function. This justifies our repeating

the steps leading from (2.2) to (2.4) to derive the formula

Z (~i)kF^(x) -Í- = —\- f e-'-»)'"a(y)¿y,
k'Ak       (ttt)1I2J

* This device is used by Widder in his paper [4], but we have completed the argu-

ment in a different way.
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where í—t—r. It is known that the right-hand member approaches

[a(x+0)+a(x —0)]/2 as t—»0 (see [3, p. 31]) and this establishes

(1.3).
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