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1. Introduction. In [l] Mann and Wolf considered the integral

equation

G[yix)]

Jo   V

where

(1) ,u.r^m^ix,
w '    h ki-x)]1'*

(2) Giy) is continuous and strictly decreasing for positive y, and

Gil) = 0.

They defined a sequence of functions yo(0> Vi(/)i ' ' ' inductively as

follows:

C   G[y*(x)]
(3) yoiO - 0,       yn+i(/) = I lyK-'\    dx,

Jo   [vit- x)]1'2

where y„*(x)=min (yB(x), 1). Under the additional assumption that

Giy) satisfies a Lipschitz condition on [0, 1 ] they proved that the se-

quence yoit), yiit), • • • converges to a bounded solution,1 y(i), of

(1). Dr. Mann pointed out to me that it was not known whether or

not the requirement of a Lipschitz condition was superfluous. The

present paper resolves this uncertainty by giving an example of a

function Giy) satisfying (2) for which the corresponding sequence

(3) does not converge. It also contains a positive result, to the effect

that the sequence defined by (3) does converge to the solution y(/)

if, in addition to requirement (2), Giy) is convex.

2. The counter example. The desired function Giy) is defined as

follows:

G{y) = 1 - y forO ^ y á 1/2;

Giy) = [1 - (2y - l)»'»]/2 for 1/2 < y.

Let Gi(y) = l— y for y^O, and let z(<) be the bounded solution of
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1 It was shown in [2] that even in the absence of the Lipschitz condition equation

(1) has a unique bounded solution y(t), provided only that G satisfies requirement (2).

This solution y(t) is strictly increasing and approaches the limit 1 as t increases in-

definitely.
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C*    Gi[z(x)]

<s> ■» - /. w^fe*
Now, as was shown in [l, p. 168], z(t) is continuous (t-%0) and dz/dt

is positive and decreasing for i>0. Thus a positive number a is

uniquely determined by the requirement z(a) = 1/2. Let k be dz/¿í

evaluated at 2a, and let ß be the smaller of 2a and «+40:'^*. Then

clearly

(6) «(0 è 1/2 + k(t - a) (a £ t £ ß).

Lemma 1. //, for some n, yn(t) l%z(t) for 0^/^/3, then over the same

interval y„+i(¿) = mm (z(t), 1/2).

Lemma 2. If, for some n, yn(t) ^min (z(<), 1/2) for O^t^ß, then over

the same interval yn+J(í) ^z(i).

Assuming that these lemmas are true, then y2r(t) ^min (z(t), 1/2),

and y2r+i(0 =z(0> on Outeß. Then clearly the sequence yoWi

yi(i), • • ■ does not converge for any t between a and ß because z(t)

> 1/2 over this range.

Proof of Lemma 1. Define Y(t) as follows:

(7) Y(t)
r>    G[z(x)]

=  I-=—dx.
Jo   [x(t-x)]W

Since yn(x) l±z(x) lor OiZxiZß and G is a decreasing function, we have

yn+i(t)^Y(t). Now Y(t)=z(t) for O^t^a; we shall show that Y(t)

<l/2 for a<ttiß. Throughout the remainder of the proof t will be

a fixed number a+àt, 0<At^ß—a. From (7) we have

fa+At G\z(x)\
Y(t) - Y(a) =  I \) dx

J a [ir(a + At — x)]1'2

(8) -f9'Gl'iX)][{«(«-»)}«>

1 "I
— t-;—  dx,

[ir(a + At - x)]l'U

= Gain — Loss, say.

Now G[z(x)]^l/2 over O^x^a, and integration gives

(9) Loss ^ «-»'»(a1'1 - (a + A/)1'2 + (A/)1'2).

To get an upper bound on the gain in (8) we first use (6) and (4),
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and find that G[z(x)]á(l - [2kix-a)]1i*)/2=fix), say. Next we re-

place fix) by the linear function F(x) determined to equal/(x) atx=a

and at x = a+A/. Since/(x) is convex we clearly have/(x) g F(x) (a ^x

^a+A¿), and thus

(10) G[zix)] g Fix) = 1/2 - m(x - a), where w=(A/)-2/3(2A)1'V2.

Substituting for G[z(x)] in the first integral of (8) and performing

the integration gives

(11) Gain g ir-1'2 [(A/)1'2 - (4w/3)(A/)»/2].

Then, from (11) and (9),

Gain - Loss g «-»"((a + A¿)1/2 - a1'2 - (4w/3)(A/)3'2)

(12) g 7T-1/2[A/(a-1/2/2) - (4m/3)(A/)s/2]

= (tt-^A/) [(a-1/2/2) - (4»t/3)(Ai)1/2].

In the last member of (12) replace m by its value (see (10)), and

replace Ai (in the second factor) by its upper bound, 4a3A2. This gives

(13) Gain - Loss g T'^At^-1'2^ - 2a-I'2/3] < 0.

This completes the proof of Lemma 1.

Proof of Lemma 2. Now G(y) =Gi(y) for 0^y^l/2, so under the

hypothesis that y„(/)^min (z(¿), 1/2) we know that

G[ynix)] = Gi[y„(x)] for 0 :g x S ß.

Then over this range

,A       f   Gi[ynjx)] r>    Gi[zjx)]
yn+xit) = I    t-;—¿iá  I    t-ï—¿x = ztt).

Jo   Wit-x)]1'2 Jo   [tt(í-x)]1'2

With this proof of Lemma 2 our discussion of the counterexample is

complete.

3. The theorem. If Giy) satisfies (2) and in addition is convex for

0^y=T, then the sequence yoit), yiit), • • • given by (3) converges to

the solution y it) of (1).

Proof. Now y0(/)=0 and yx(i) =2G(0)(i/ir)1'2. Define positive

numbers d and c by the respective requirements

(14) Gid) = 3G(0)/4,       yiic) = d.

We first prove the conclusion of the theorem for t restricted to the

interval [0, c].
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From the convexity of G(y) we see that for any fi and r2 between

0 and 1 (ri7^r2) we have

(15)
G(ri)-G(r2)

fi — r2

G(0) - G(n)

ri

From our choice of d and c and the fact that yn(t) =Syi(0 for all w we

see from (2) that G[y„(i)] = 3G(0)/4 for O&ác. Then

(16) y»(i) = (3/4)yi(/) = (3/2)G(<y)(tfr)m-

Let A„ = max| y„(f) -y„_i(/) | for 0 ^ t gc. Thus

" \G[yn(x)] - G[yn-i(x)]

[x«-*)]1'2

■ « (G(0) - G[yn(x)]) ■ | yn(x) - y„_i(*) \

i     fA      ml    fMc[yn(*)]-G[:yn-i(*)]! ,
I yn+i(0 - yn(t) | = Jo-r—-^-«J*

y^H*-«-*)]1'2

[G(0)/4]An

¿a;

¿x

J o

"Jo  (3/2)G(0)(*A)1/2ki- a)]1'2

A,f dx
= — I    7-5-(t/6)A„.

6 Jo   [a^-*)]1'2      W  ^

(In the above we first use (3), then (15), and then (14) and (16). The

two final equalities are obvious.) Thus |yn+i(/)— y„(i)| ^An+i

= A„(îr/6) ^(7r/6)B, for O^t^c. This proves the convergence on the

interval [0, c\.

Suppose the theorem is false and that on some interval [0, T] the

sequence yo(<)> yi(0> " " " does not converge. Now for every /, y0(0

úyi(t)ú • • ■ áy(í)= " • ' =ya(¿) =yi(0- Therefore the y's of even

subscript converge to a continuous limit function Fi(i) and the y's of

odd subscript converge to a continuous limit function Y2(t), and

Yi(t) ^y(t) ^ F2(i). It is furthermore clear that the substitution of

Yi(x) [respectively F2(x)] for y(x) under the integral sign in (1) gives

Y2(t) [respectively Fi(/)] in place of y(t). The convergence of yo(i).

yi(i), • • • on [0, c] implies that Fi(i) = Y2(t) lor0^ti%c. Let e be the

greatest number such that Fi(/) = Y2(t) for 0^/^e. Then cúe<T.

Since Fi has a positive minimum value on [e, T] it follows from the

hypotheses on G that there exists a positive k such that for any x on

[e, T], G[Fi(x)]-G[F2(x)]^¿| Fi(x) - F2(x) |. Choose a fixed t

(e<t<T) so that (a) 2k[(t-e)/ir]1l2<l and (b) \ Yi(x)- Y2(x)\

á| Fi(0-F2(0| for egxgi. Then
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\vrA     vffxl      f'G[Fi(«)]-C[r,(«)] ,
|F2(0-FiW|=Jo W(t_x)]ili       äx

"J.       ki-x)]1'2

', [t(/-*)]*'*

«A|Fi(x)-F2(x)|
¿x

dx
/' d

= 2A[(/-e)A]1/2-|F1(i)-F2(0|

< F2(0 - Yiit).

Thus the assumption that the theorem is false has led to a contradic-

tion.
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