A NONCONVERGENT ITERATIVE PROCESS
J. H. ROBERTS

1. Introduction. In [1] Mann and Wolf considered the integral
equation

t Gly(x
(1) (@) = . Fr(t[——y-(x-))‘]]_lﬁ )
where
(2) G(y) is continuous and strictly decreasing for positive y, and

G(1) = 0.
They defined a sequence of functions yo(£), y(?), - - - inductively as
follows: .

*

)] () =0,  yuna(t) = otﬁ%[{"—(gllmdx,

where y.*(x) =min (y.(x), 1). Under the additional assumption that
G(y) satisfies a Lipschitz condition on [0, 1] they proved that the se-
quence yo(t), y(f), - - + converges to a bounded solution,! y(¢), of
(1). Dr. Mann pointed out to me that it was not known whether or
not the requirement of a Lipschitz condition was superfluous. The
present paper resolves this uncertainty by giving an example of a
function G(y) satisfying (2) for which the corresponding sequence
(3) does not converge. It also contains a positive result, to the effect
that the sequence defined by (3) does converge to the solution y(f)
if, in addition to requirement (2), G(y) is convex.

2. The counter example. The desired function G(y) is defined as
follows:

@ Gy)=1—y for0 < y=<1/2;

G(y) = [1 — (2y — 1)13]/2 for 1/2 < .

Let Gi(y)=1—y for y20, and let z(f) be the bounded solution of
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1 It was shown in [2] that even in the absence of the Lipschitz condition equation
(1) has a unique bounded solution y(¢), provided only that G satisfies requirement (2).
This solution y(¢) is strictly increasing and approaches the limit 1 as ¢ increases in-

definitely.
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¢ Gils(%)]
o [r(t— )]

Now, as was shown in [1, p. 168], 2(¢) is continuous (¢=0) and ds/d¢
is positive and decreasing for ¢>0. Thus a positive number « is
uniquely determined by the requirement z(a) =1/2. Let k be dsz/dt
evaluated at 2a, and let 8 be the smaller of 2a and a-+4a®k2. Then
clearly

(6) 3() 2 1/2+ k(t — a) (astsp).

LEMMA 1. If, for some n, y,(t) 22(t) for 0 <t =P, then over the same
interval yn41(t) Smin (2(2), 1/2).

LEMMA 2. If, for some n, y.(t) Smin (3(¢), 1/2) for 0=t =P, then over
the same interval y.1(t) = 3(t).

©) s(1) =

Assuming that these lemmas are true, then y,,(¢f) Smin (s(¢), 1/2),
and yg.1(t) 22(t), on 0S¢t<B. Then clearly the sequence y,(t),
(t), - - - does not converge for any ¢ between a and B because 5(¢)
>1/2 over this range.

Proor oF LEMMA 1. Define Y(¢) as follows:

t Gla)] .
o [7(¢— )]

Since y.(x) 2 2(x) for 0Sx<p and G is a decreasing function, we have
Yor1(t) S Y(£). Now Y () =2(f) for 0St=<a; we shall show that ¥(¢)
<1/2 for a<t=p. Throughout the remainder of the proof ¢ will be
a fixed number a+At, 0<At<B—a. From (7) we have

kAt Gla(x)]
() = ¥le) = f. [r(a + At — x)]112 ?

®) 'erM”WFagjﬁF

1 ]d
T e+ & - 9]

™ ¥@) =

= Gain — Loss, say.
Now G[z(x)]=1/2 over 0Sx=<q, and integration gives
) Loss = 71/%(al/2 — (a + A)Y? 4 (A1),
To get an upper bound on the gain in (8) we first use (6) and (4),
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and find that G[s(x)] S (1 — [2k(x—a)]®)/2 =f(x), say. Next we re-
place f(x) by the linear function F(x) determined to equal f(x) atx =«
and at x =a+At. Since f(x) is convex we clearly have f(x) < F(x) (a<x
<a-+At), and thus

(10) Gla(x)] S F(z) = 1/2 — m(x — «), where m=(Af)~2/3(2k)1/3/2.

Substituting for G[s(x)] in the first integral of (8) and performing
the integration gives

(11) Gain < = 1/2[(A)Y2 — (4m/3)(A%)%2].
Then, from (11) and (9),
Gain — Loss < 7 V%((a 4+ A)Y2 — al/? — (4m/3)( AL)3/2)
(12) < =12 [AYa1Y2) — (4m/3)(A1)42]
= (v 120 [(@1/%/2) — (4m/3)(A1)*12].

In the last member of (12) replace m by its value (see (10)), and
replace At (in the second factor) by its upper bound, 4a?%2. This gives
(13) Gain — Loss < 7 1/2At[a1/2/2 — 2a7112/3] < 0.

This completes the proof of Lemma 1.

Proor oF LEMMa 2. Now G(y) =Gi(y) for 0=y =<1/2, so under the
hypothesis that y,(t) Smin (z(t), 1/2) we know that

Glya(%)] = Gi[ya(x)] for0 < z < 8.
Then over this range
¢ Giya(x)] in > ‘_ﬁllz(x)]
o [x(t— x)]v2 o [x(t — x)]v2

With this proof of Lemma 2 our discussion of the counterexample is
complete.

3. The theorem. If G(y) satisfies (2) and in addition is convex for
0=<y=1, then the sequence yo(t), y(t), - - - given by (3) converges to
the solution y(t) of (1).

Proor. Now yo(#) =0 and y:(¢) =2G(0)(¢/7)V2. Define positive
numbers d and ¢ by the respective requirements

(14) G(@) = 3G(0)/4,  n(e) = d.

We first prove the conclusion of the theorem for ¢ restricted to the
interval [0, c].

Ynia(t) = dx = 3(1).
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From the convexity of G(y) we see that for any r, and r; between
0 and 1 (r,7;) we have

| G(r1) — G(rs)

1 — 12

L 6O ~6ed

n

(15)

From our choice of d and ¢ and the fact that y,(¢) S¥(¢) for all n we
see from (2) that G[y.(t)]=3G(0)/4 for 0<t=<c. Then

(16) ya(8) 2 B/D3(1) = (3/2)G(0)(¢/x)*12.
Let A,=max|ya(t) —y.()| for 0<¢t=<c. Thus

¢ G n - G n—1
| yaia(t) — yn(’)l = j; l b (E:)'(]t _ x)[]yllz (x)”

f‘ (G(O) - G[yn(x) ]) l y,.(x) - yw_l(x)l
0 ya(%) [v(t — 2) 112
‘ [G(0)/4]A,
d
=), GO/ G= AFn

A, ¢ dx
o e LR

(In the above we first use (3), then (15), and then (14) and (16). The
two final equalities are obvious.) Thus |y,.+1(t) — ()| SAn1
<A.(w/6) =(x/6)*, for 0=t=c. This proves the convergence on the
interval [0, c].

Suppose the theorem is false and that on some interval [0, T] the
sequence ¥o(t), y(#), - - - does not converge. Now for every ¢, yo(t)
Sy)S - Sy = - - - Sy3() Syi(t). Therefore the y's of even
subscript converge to a continuous limit function ¥;(¢f) and the y’s of
odd subscript converge to a continuous limit function Y,(¢), and
Y1(t) Sy(t) = Yo(2). It is furthermore clear that the substitution of
Yi(x) [respectively Yi(x)] for y(x) under the integral sign in (1) gives
Y2(t) [respectively Yi(t)] in place of y(f). The convergence of y(t),
y1(£), - - - on [0, ¢] implies that Yi(f) = Y»(¢) for 0<t=c. Let ¢ be the
greatest number such that Y;(¢) = Y,(f) for 0=¢<e. Then cZ<e<T.

Since Y; has a positive minimum value on [e, T] it follows from the
hypotheses on G that there exists a positive % such that for any x on
[e. T], G[¥i(x)]-G[Ya(x)]<k| Yi(x) — Ya(x)|. Choose a fixed ¢
(e<t<T) so that (a) 2k[(t—e)/7]¥2<1 and (b) I Yi(x) — Yg(x)l
<| 7a@t) — V()| for esx=<t. Then

b

dx
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dx

tGLY - GlY,
ro-rol- [ [(:():]- x)][m(x)]

‘| Vi(2) — ¥a(a) |
fo [‘l’(t - x)]llt dx

¢ d
S k| V) - Yz(t)lf '[,—(,Tx;]‘;r,

= 2k[(t — &)/x ]! | Va(t) — Vo)) |
< Ya(t) - Vi(0).

Thus the assumption that the theorem is false has led to a contradic-
tion.
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