
ON THE FOURIER EXPANSION OF STATIONARY
RANDOM PROCESSES

R. C. DAVIS

The purpose of this note is to demonstrate that in the Fourier ex-

pansion of a quasistationary random continuous process with con-

tinuous covariance function, the amplitudes of the frequency com-

ponents do not possess the desirable property of being mutually un-

correlated unless the process degenerates to a single random variable

in its range of definition. Specifically we consider a real-valued con-

tinuous random process x(t) observed during a time interval T. We

assume that the mean and covariance function of x(t) exist, so with no

loss in generality we assume that

Ex(t) = 0    and   Ex(s)xit) = r(s - t),

where r(r) is an even function of t and is continuous at r=0 with

r(0) = l. It is then well known [l] that r(r) is continuous for all r.

Consider the Fourier expansion of x(¿) given by

x(t) = a0 + l.i.m. 2-i\an cos 2xw-\- bnsin 2irn — 1
«-»« n=i \ T T /

in which l.i.m. denotes limit in the mean constructed from the co-

variance function r(s— t). In the engineering literature [2] on random

noise it is assumed quite frequently in the Fourier expansion of a

quasistationary process that £(a„am)=0 for nj^m, and E(anbm)=0

for all positive integers n and m. What we show is that the only quasi-

stationary process for which this can hold even for one pair of integers

n, m (nj¿m) and for all finite observation times1 T is the trivial

process in which r(s— t) = 1 for all s and t.

It is well known that there exist quasistationary processes with

discontinuous covariance functions for which the property holds that

the amplitudes are mutually uncorrelated. The simplest example of

one of these is a "pure white noise" which is characterized by Ex(t)2

= 1; £x(5)x(/)=0, for s^t. Moreover when the assumption of quasi-

stationarity is dropped, and one considers processes for which the

covariance function r(s, t) may not be of the form r(s—t), then there
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1 It is easy to prove for sufficiently long observation times that as T increases, the

correlation coefficient between any two different amplitudes in the Fourier expansion

decreases and approaches zero as T approaches infinity.
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exist random processes with continuous covariance function for which

the amplitudes of the Fourier components are mutually uncorrelated.

The best known example is the Wiener process, for which r(s, t)

=<r2 min (s, t).

Even though we show that the above property does not exist for

quasistationary processes with continuous covariance function

r(s — t) (except for the trivial process x(t)=ao, a single random vari-

able in T), a solution to this problem is afforded by the orthogonal de-

composition of a random continuous process obtained independently

by several authors [3; 4; 5]. However, in order to obtain such a de-

composition of a random process into uncorrelated components, one

must solve a homogeneous linear integral equation, the kernel of

which is the covariance function of the process with the range of inte-

gration being the time interval during which the process is observed.

Although the eigenfunctions can be obtained explicitly in most prac-

tical cases, i.e., a quasistationary process with the spectral density a

rational function of frequency, the eigenvalues must be obtained as

solutions of a transcendental equation. In short the rigorous method

of expansion of a random function into uncorrelated components is

considerably more difficult to carry out than the simple task of ex-

panding the function in a Fourier series.

H. B. Mann [6] has given a sufficient condition that a continuous

random process with continuous covariance function can be expanded

in a Fourier series which converges in the mean to the function x(t).

The condition is that r(s, t) be a monotonoid and continuous function;

i.e.,

r(s, t) = h(s, t) - g(s, t)

where h and g are two functions monotonie in s and t in the same sense.

For our purposes we assume merely that the Fourier expansion con-

verges in the mean in the interval T. It is convenient in the later

manipulation to consider the expansion of x(t) in exponentials. We

assume then that for 0<t<T,

n—i-m r~ ¡ -i

(1) *(/) = l.i.m.   Z c" exP   2irin —
m—<°    n—m L T J

where

1 cT       r       n
cn = — I    x(t) exp   — 2rin — \dt

and
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1   rT rT                   r           ins - mt)l
E(^c-m) = -J     J    ris - l) exp^-2™-J,

an = c„ + c_„,        bn = i(cn — c_„),

dsdt.
T2J0   Jo ' L F      J

If we write

then

(2) x(t) = a0 + l.i.m. 2_ ( an cos 27tm-h bn sin 2ir» — J.
»-»» n=l \ F F /

A. Khintchine has shown (loe. cit. p. 608) that the continuous co-

variance function of a continuous quasistationary random process

admits the representation

r(s - t) » f   e<u('-'>dF(«)
J -»

in which F(w) is a bounded, nondecreasing function and is termed the

spectral function of the process.

We state and prove the following theorem :

Theorem. Given a real valued quasistationary random continuous

process with spectral function F(u) and variance f2KdF(w) = 1, and for

which the Fourier expansion in equation (2) converges in the mean. The

necessary and sufficient condition that for any pair of unequal positive

integers n and m and every finite time interval T the amplitudes an, am,

bn, bm satisfy the relations Eanam — Eanbm = Eambn = Ebnbm = Q is that

F(co) = 0 for o) <0 and F(u) = 1 for w = 0.

Proof. Since it is more convenient to work with the expansion

given in (1), we require the following lemma:

Lemma. For any pair of unequal positive integers n and m, the rela-

tions Eanam = Eanbm = Eambn = Ebnbm = 0 are equivalent to the relations

Ecncm = Ecnc-m = Q.

The proof of the lemma is very simple and is obtained directly from

the relations

EcnCm   = 4E[(anam + bnbm) + i(a„bm — ambn)],

EcnC-m = 4£[(a„am — bnbm) + i( — anbm — amb„)].

Proceeding with the main proof,

i   r 2t c 2t
Ec„cm =-f r[a(u — v)} exp [— i(nu — mv)]dudv

4x2 Jo     Jo
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where a = T/2ir. By Khintchine's representation theorem, r [a(u—v) ]

=/ü«,e<wa("-,) dF(u>) where F(u) is a bounded nondecreasing func-

tion. Inserting this value of r [a(u — v) ] in the above, we obtain

l   r2' C2' c°
EcnCm = —- I I    exp [¿(aco — ra)« I

iir2 Jo      Jo      J -a,

•exp [— i(aw — m)v]dF(ui)dudv.

From the above lemma, the statement of the theorem is that the

necessary and sufficient condition that the right-hand side of (3)

should vanish for all positive a and any pair of integers ny^m is that

F(w) =0 for w<0 and F(w) = 1 for w = 0. Since

J        n 2t      /• 2t      n oo

— I        f        || exp [i(au — ra)«] exp [— i(ao> — rat)»] j
1>2 J o     J o     J -»

■dF(oi)dudv è r(0),

we may invert the order of integration in (3) and obtain, after inte-

gration with respect to u and v,

(4) E(CnCm)   =  —   f r <#(«)•
7T2J_,

sm' iraw

(aco — n)(aw — raí)

The proof of the sufficiency of the theorem is obvious from (4). In

order to prove the necessity, we denote the dependence of E(cncm)

on a by writing

1    C °° sin2 iraœ
(4a) Jnm(a) = - I--dF(f*).

ir2J -K   (aoo — n)(ao> — m)

Since Jnm(a) =0 for a>0,

("» da rM

(aw — ra)(aco — m)

/' °° Jnm(a)              1   r°° da f            sin2 irao>
——da = -2l     -I     1-Vr-rdF(«) = 0.

o          a                  t* J o      a J _oo   (aw — ra) (aw — m)

Since for all a > 0,

/' °°       /* " I          sin2da |      -
o        J __ I «(au — ra)

dF(w) < »,
*(aw — ra) (aw — rat) I

we may invert the order of integration in (5) and obtain

(6) f   gnm(œ)dF(w) = 0
J -X

in which
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/' "         sin2 7rxdx
- (for a > 0)

o     x(x — n)(x — m)

S.
{x — w)(x — m)

0 sin2 irxdx
(for«<0),

x(x — »)(x — m)

= 0 (for u m 0).

Now by using some of the usual tricks in evaluating infinite integrals

(excluding the method of contour integration which appears to make

the problem more complicated), it is not too difficult to show that

/_:

sin2 irxdx

x(x — »)(x — m)

Moreover it can be shown that

sin2 7rxdx

I/'I «/ 0 x(x — »)(x — m)

= 0.

>0.

In view of this we see that the function g„m(w) is a constant unequal

to zero except at w = 0, and there g„m(0) = 0.

Hence we conclude from (6), since F(w) is nondecreasing with

Fi - oo ) = 0 and ¡1 „dFi<a) = 1, that

F(a>) = 0, for w < 0,

F(co) = 1, for w ^ 0,

and the theorem is proved.

From Khintchine's representation theorem for r(r) in terms of F(w),

we see that r(r) = 1, for all t. By substituting this value in the expres-

sion for EicnSm), we see that the above spectral function corresponds

to the random process

x(0 = Co = «o

with ao a random variable with
2

Eao = 0    and    Ea0 = 1.

I wish to acknowledge the benefit of several discussions with Pro-

fessor R. P. Dilworth, California Institute of Technology.

References

1. A. Khintchine, Korrelationstheorie der stationären stochastichen Prozesse, Math.

Ann. vol. 109 (1934) pp. 604-615.
2. S. Goldman, Frequency analysis, modulation and noise, McGraw-Hill, 1948, pp.

325-330.



'9531 AN EXPRESSION FOR tf,(»z)/0i(z) 569

3. M. Kac and A. J. F. Siegert, An explicit representation of a stationary Gaussian

process, Ann. Math. Statist, vol. 18 (1947) p. 438.

4. Kari Karhunen,   Über lineare  Methoden in der Wahrscheinlichkeitsrechnung,

Annales Academiae Scientiarum Fennicae, Helsinki, 1947.

5. M. Loève, Fonctions aléatoires de second ordre, from the book by P. Levy en-

titled Processus stochastiques et mouvement Brownien, Gauthier-Villars, 1948.

6. H. B. Mann, Introduction to the theory of stochastic processes depending on a con-

tinuous parameter, National Bureau of Standards Report 1293, May, 1951, chap. 6.

U. S. Naval Ordnance Test Station, Pasadena

AN EXPRESSION FOR ôi(nz)/ûx(z)

W. N. BAILEY

1. Introduction. In a recent paper [l] I used the formula

IT [(i + ?•/*)(! + c'-'zXi - g^-V^Xi - <?2"-V)(i - ?-)j
(l.i) = II [(i - ç3n-22')(i - g3*-yz3)(i - q%n)]

+ z]J [(1 - q*~-V)(l - g'»-2/2')(l - <?"•)],

where, in the products, ra takes all values from 1 to oo, to simplify

certain identities of the Rogers-Ramanujan type. It has been shown

by Sears [2] (and independently by Miss Slater) that (1.1) can be

derived from the relation connecting three products of four sigma

functions, or alternatively from the corresponding relation connect-

ing theta functions. Now (1.1) can be written in the form

■(l-g-vxi-g»/««)
(1 - jH«)(l - qn/z)

(1   2) (1  — <7S")
= IT 7:—~ X [II (1 - 53n-1A,)(l - <?'"-V)

(1 - a»)

+*n (i - ?,n_2A3)(i - o3"-^3)]

and if we write

S(z; p) = IT (i - p~*»M - rA)

this formula can be written as

S(Z2; q) -r-r   (1 - q3n)  r

(1.3)       ~-^- = II tH4 [5(5»'; f) + zS(q2z*; ^ I.
_S(z; q) (1 - qn)
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