AN EQUICONTINUITY CONDITION FOR
TRANSFORMATION GROUPS

JOHN D. BAUM

The purpose of this paper is to extend an unpublished theorem of
Kakutani, which gives a necessary and sufficient condition for equi-
continuity in dynamical systems. We shall state and sketch the proof
of Kakutani's theorem and then state and prove the generalization
thereof.

1. Definitions. These definitions are essentially those given by
Gottschalk and Hedlund (cf. [3]).! Let X be a topological space, T
a topological group with identity e, and = a mapping of X X T into
X with the properties: (1) 7(x, €) =x, (2) w(w(x, ), ts) =7(x, tts),
(3) = is continuous. The triple (X, T, w) is called a transformation
group (or dynamical system). Henceforth we shall write w(x, £) simply
as x¢; and if ACT then x4 = {xt|¢t©A}. The orbit of x is the set xT';
the orbit closure of x, the set Cl (xT). The set 4 is said to be minimal
under T or simply minimal, provided 4 is an orbit closure and 4 does
not properly contain an orbit closure.

In what follows we shall be dealing with uniform spaces; for the
properties of such spaces we refer to [4]. We alter the notation in
writing xo instead of V.(x) for “the neighborhood of x of index a.”
The group T is called equicontinuous at x €X, provided the collection
of mappings {n!|tET, where n*(x) =xt} is equicontinuous at , i.e.
for each index o of X there exists an index 8 of X such that x8tCxta
for all t&T. The group T is called equicontinuous provided it is equi-
continuous at each point of X. The group T is called uniformly equi-
continuous provided the collection of mappings {n*|t€T} is uni-
formly equicontinuous, i.e. for each index « of X there exists an index
B of X such that x8tCxta for all tET and all xEX.

Let T be a topological group and let A CT, then 4 is said to be left
(right) syndetic in T provided that T=AK (T=KA) for some com-
pact subset K of T. If T is abelian these two notions coincide, and we
simply say that 4 is syndetic. The point xEX is said to be almost
periodic under T provided that for each index a of X, there exists a
left syndetic subset 4 of T such that x4 Cxa. A point xEX is said
to be discretely almost periodic under T provided that for each index «
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of X there exists a set 4 in T and a finite set Fin T such that T=A4F
and x4 Cxa (i.e. x is almost periodic relative to the discrete topology
in T). The group T is said to be almost pertodic provided that for each
index a of X, there exists a left syndetic subset 4 of T such that x4
Cxa for all € X. The group T is said to be discretely almost periodic
provided that for each index « of X, there exists a set 4 in T and a
finite set F in T such that T=AF and x4 Cxa, for all x€X (ie. T
is almost periodic relative to its discrete topology).

Let Y be a topological space, X a uniform space, and let ® be a class
of mappings of ¥V into X. Let a be an index of X, define a*
={(o, ¢)] (6(%), ¥(3)) Ea for all yE ¥}, and let U be the uniformity
of X; then { a*laE‘U} is a uniformity base and is said to generate
the space index uniformity of ®. Let T be a topological group, X a uni-
form space, and ® the class of all the right uniformly continuous func-
tions on T to X; and let & be provided with its space index uni-
formity. Let v:® X T—® be defined by »(, £) =y, where ¥(7) =¢(¢r)
for all 7&€T. The uniformly equicontinuous transformation group
(®, T, ») is called the left uniform functional transformation group over
T to X.

2. Kakutani’s theorem.

THEOREM (KARUTANI). Let X be a compact metric space, let R be
the real numbers, considered as a topological group under addition, with
the usual topology, let (X, R, ) be a transformation group such that X
1is minimal, and let f be a continuous mapping of X into R. For x' €X,
let f be the function from R to R defined by f.(t) =f(x't) for all tER.
Then R is equicontinuous if and only if there exists a point x' €EX such
that for every continuous f: X—R, f. is a Bohr almost periodic function
[1].

We sketch the proof of the sufficiency of the condition. Let x’ be a
point with the required property; it will be sufficient to show that R is
uniformly equicontinuous on the orbit of x’, a set dense in X. Let ¢>0.

The Stone-Weierstrass theorem enables us to find a set { fi(x), g.~(x)|
1=1,2,---, N } of continuous functions on X to R such that

N €
p(x, 9) — 2 fi(@ay)| < T forall x, y € X,
=]

where p is the metric in X. By the hypotheses of the theorem the func-
tions f;(x't), g:«(x't) will be uniformly bounded in absolute value (by
M>0) and will be Bohr almost periodic functions. Let ¢ =¢/8MN.
Then the set of common translation numbers for these functions is
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relatively dense in R, i.e. there exists a number 2(¢’) >0 such that for
any real number ¢, there exists s, 0 <s<k(€’), such that

| fils'(w + 1) — f(#'w +9))| < ¢,

| g:(a'(u 4 1) — g+ )| < ¢

for all “ER. Let >0 such that p(x, ) <& implies p(xs, ys) <e/4 for
all s with 0 <s <k(¢'). Then if p(x't;, x'ty) <8 we have

p(x'(ti + 1), x'(82 + 1))
p(& (1 + 1), #(6+ 9) — 2 f(&( + D)@'l + )

t=1

N
_Zlf,-(x/(zl + 0)gi(x'(t + ¥)

=

+

N
- .E,f‘(x'(“ + )gi(#'(t2 + 5))

N
+ E fi(@ (4 + 5))g(a'(te + ) — p(2'(t1 + 5), 2'(]2 + 9))
4+ o(x'(t + 5), (L2 + 5) <¢ forallt € R.

3. Generalized theorem. We now generalize Kakutani’s theorem,
but before we state the generalization we shall require one further
definition. Let (X, T, 7) be a transformation group, let ¥ be a uni-
form space, and let f be a mapping X into Y. Define f.(f) =f(x¢t) for
all t&T. It is clear that f, maps T into Y.

3.1 PRINCIPAL THEOREM. Let (X, T, ) be a transformation group,
let X be a compact Tay-space which is minimal under T and let T be
abelian. Then T is equicontinuous if and only if there exists a point
x0E X such that for every continuous mapping f of X into the real num-
bers, R, the function f.,(t) is almost periodic in the left uniform func-
tional transformation group over T to R.

We must first show that f, is a point of &, the class of all right uni-
formly continuous mappings of T into R. We require the following
lemma.

3.2 LEMMA. Let (X, T, w) be a transformation group, let X be com-
pact and let a be an index of X. Then there exists V, a neighborhood of e
in T, such that xVCxo for all xEX.

We omit the proof since it is quite straightforward. We now show
that f,E€®. In fact we prove a somewhat more general theorem.
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3.3 THEOREM. Let (X, T, 7) be a transformation group, let X be
compact, let Y be a uniform space, and let f: X— Y be continuous. Then
Sz 15 a right uniformly continuous mapping of T into Y.

Proor. Since X is compact, f is uniformly continuous on X to Y.
Let v be an index of ¥, and let 8 be an index of X such that (x, y) €6
implies (f(x), f(¥)) €y. By 3.2 we can find a neighborhood V of ¢ in
T such that v€ V implies (x, xv) €8 for all x€X. Thus (f(x), f(xv))
€y for all x€X and all yE V. Let tET and let xt=1y; then for v& V,
(f), fOm)) Ev or (f(xt), f(xtv)) Ev, or (f(#), f=(tv)) 7. Thus for any
tET and any s&tV we have (f;(2), f2(s)) €. This completes the proof.

We are now in a position to prove one half (the necessity) of the
principal theorem. In fact, we can prove a bit more.

3.4 THEOREM. Let (X, T, ) be a transformation group, let X be
compact, let Y be a uniform space, let f be a continuous mapping of X
into Y, let T be equicontinuous and abelian, and let xEX. Then f,
is an almost pertodic point of (B, T, v), the left uniform functional trans-
formation group over T to Y.

Proor. Since X is compact T is uniformly equicontinuous. Gott-
schalk has shown [2] that this implies that T is discretely almost
periodic. Let x&€X be fixed; by 3.3, f.€®. Since X is compact, f is
uniformly continuous on X to Y. Let A be an index of ®, then there
exists v, an index of Y, such that ¥*CA; and then there exists §, an
index of X, such that f(xt8) Cf(xt)y for all tET. Since T is almost
periodic, there exists 4, a left syndetic subset of T, such that for all
yEX, yA Cy9, in particular then xt4 Cxtd for all t€T. Thus f.(t4)
=f(xtA) Cf(xt8) Cf(xt)y =f(t)y for all tET, whence f.4 Cfy*CfA.
This completes the proof.

The principal difficulty in the proof of our generalization of Kaku-
tani’s theorem is that since we no longer have a metric in X, we are
no longer able to use the Stone-Weierstrass theorem to approximate
it. We use the following lemma to overcome this difficulty.

3.5 LEMMA. Let (X, T, «) be a transformation group, let X be com-
pact and minimal under T, and let T be abelian. Let f be a continuous
mapping of X into Y, a uniform space, and suppose there exists xeEX
such that f -, is almost periodic in the left uniform functional transforma-
tion group over T to Y, (®, T, v). Then f, is almost periodic for each
xEX, and in fact for each index A of P there exists a syndetic subset A
of T such that f: ACS. A for all xEX.

ProOF. Let A be an index of ®; then there exists an index a of ¥
such that a*CA. Let 8 be a symmetric index of ¥ such that $*Ca.
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Since f., is almost periodic, there exists a syndetic subset 4 of T such
that f.,(4f) Cf:,(t)B for all tET, or f(xeAt) Cf(xet)8. Then for all
tET, f(xoeAtet) Cf(xeet)B, and since T is abelian, we have f(xo0A?)
Cf(xotet) for all ¢ and t&T.

‘Since X is compact, f is uniformly continuous; thus there exists an
index v of X such that f(xy) Cf(x)B for all x€X. Let a€4 and t&T
be fixed. Since 7t and w%* are uniformly continuous, X being compact,
we can select a symmetric index & of X so that x8t Cxty and xdat Cxaty
for all x€X. Since X is minimal there exists 4, €T such that x¢f Ex9,
whence x¢)t Exdt Cxty. Thus

(1 f(xotst) € f(xty) C f(at)B.
From the first part of the proof we have
(2 f(xet108) € f(xo Lit)B.

Now x¢1Exd, and since § is symmetric, xEx¢hd; therefore xat
Exohidat Cxohaty, whence

(3) f(zat) € f(xotraty) C f(xot108)B.

From (1), (2), and (3) we have f(xat) Ef(xt)8* Cf(xt)a, and since a
and ¢t were arbitrary, f(xAt) Cf(xt)a for all t€T. Thus f.ACf.a*
Cf.A. This completes the proof.

We require a further lemma.

3.6 LEMMA. Let (X, T, w) be a transformation group, let X be com-
pact, and let T be abelian. Let f and g be continuous mappings of X into
R, the reals. Let x&X be fixed, and let f, and g. be almost periodic in
(®, T, v), the left uniform functional transformation group over T to R.
Then for each €>0, there exists ECT and a finite se¢ HCT such that
EH=T and such that bEE implies |f(xbt) —f(xt)| <e and |g(xbt)
—g(xt)| <e for all tET.

Proor. We prove that f, is discretely almost period. Let A be an
index of ®; then there exists @, an index of R, such that a*CA. Let 8
be a symmetric index of R such that 82Ca. Since X is compact,
f:X—R is uniformly continuous. Let ¥ be an index of X such that
fley) Cf(x)B for all x€X. By Lemma 3.2 there exists V, a neighbor-
hood of e in T, such that x VCxy for all x€X. Since f, is almost peri-
odic, there exists A CT and K, compact, in T with AK =T, such that
oA Cf.B* or f(xat) Cf(xt)B for all a€EA and all tET. Now K is com-
pact and K CU,ekkV; therefore there exists a finite set {k:i}i, =K'
such that KCK'V. Let A’=AV; then A’'K'=AVK'=AK=T, and
A’ is discretely syndetic in T. Let a’€4’, tET, and a’ =av where
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aEA and vEV; then f(xa't) =f(xavt) Ef(xvt)B. Also xvt=xtv&xtV
Cuxty whence f(xvt) Ef(xt)B; therefore f(xa’t) Ef(xt)B2Cf(xt)a for all
a'EA’ and all tET, or f.A' Cf.a*Cf-A. This completes the proof that
f.is discretely almost periodic. Similarly g, is discretely almost periodic.

Define A(e, f) = {al a€ET, |f(xat) —f(xt) | <eforall tET} . We prove

1) Ale, f) = A7, f)
and
(2) A%, f) C A(2e, f).

Let aEA(e, f), then lf(xat) —f(xt)l <e for all tET. Let ' =at or
t=a"1t', then | f(xaa=4') — f(xa",‘t’)l <eor ] flxt) — f(xa*lt’)l <efor all
t' €T, whence a—'€A4 (¢, f). This completes the proof of (1).

Let a, a'€A(e, f); then | f(xaa't) —f(xt)| < |f(xaa’t) — f(xa’t)l
+|f(xa’t) —f(xt)| <e+e=2¢. Thus aa’ EA(2¢, f). This completes the
proof of (2).

Let €>0, then since f, and g, are discretely almost periodic, there
exist F={t:}%, and G={s;}L,, such that A(e/2, )F=T and
A(e/2, 9)G=T. Let E; =[A(e/2, NHt:JN[A(e/2, g)s;], then T
=UpL UL, Ei;. Let E=A (e, )NA(e, g). Now for some 7 and j, E;;# J;
thus let #€E;;. We prove EuDE;; Let v€E, then v=at;, since
E;jCA(e/2, f)t.. Now uEE;; whence u=a't;, where a’©SA(¢/2, f)
or t;=a'"'u; therefore v=at;=aa’~u or vu—'=aa’~!. But by (1) and
(2), [A(e/2, H]TA2(e/2, £)]CACe, f); therefore vu—1EA(e, f). Simi-
larly vu—1€ A (¢, g), whence vu—! € E or vE€ Eu. This completes the proof
that EuDE;;. Now for each E;;#J select 7, EE;j and suppose there
are N such 7. Then UY,Er,=U U Ey;=T, and E is discretely
syndetic. Furthermore, by definition E has the property that bEE
implies | f(xbt) —f(xt)! <e and lg(xbt)—g(xt)l <e for all tET. This
completes the proof of the lemma.

An application of Urysohn’s lemma enables us to prove our last
lemma.

3.7 LEMMA. Let X be a compact Ts-space; then for each index o of
X there exists a finite class of functions { f‘|i= 1,2,---,N } on X to
the real numbers such that‘lf.-(x) -—f.-(y)l <1/2 for i=1,2, .., N im-
plies x Eyor.

We are now in a position to prove the second half (sufficiency) of
the principal theorem, 3.1.

Proor (sufficiency). We show T is almost periodic. Let ¥ be an
index of X. By 3.7 there exists a finite class of functions
{fii=1,2, - - -, n} such that |fi(x) —fi(5)| <1/2fori=1,2, - - -, n
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implies x €yy. By 3.5 there exist 4; for each 7, 1 <7 =n, each syndetic
in T, such that | fi(xA#)— _f.-(xt)l <1/2 for all x€X and for all tET.
By 3.6 there exists a single 4 such that |f«(xAt)—fi(xt)| <1/2 for all
1, 1S51=<n, and for all x€X and all tET. Thus xAtCxty for all x€X
and all €T, whence T is almost periodic. Finally by [2, Theorem 2],
T is equicontinuous. This eomplete the proof.
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