AN EQUICONTINUITY CONDITION FOR TRANSFORMATION GROUPS

JOHN D. BAUM

The purpose of this paper is to extend an unpublished theorem of Kakutani, which gives a necessary and sufficient condition for equicontinuity in dynamical systems. We shall state and sketch the proof of Kakutani's theorem and then state and prove the generalization thereof.

1. **Definitions.** These definitions are essentially those given by Gottschalk and Hedlund (cf. [3]). Let X be a topological space, T a topological group with identity e, and π a mapping of $X \times T$ into X with the properties: (1) $\pi(x, e) = x$, (2) $\pi(\pi(x, t_1), t_2) = \pi(x, t_1 t_2)$, (3) π is continuous. The triple (X, T, π) is called a transformation group (or dynamical system). Henceforth we shall write $\pi(x, t)$ simply as xt; and if $A \subset T$ then $xA = \{xt \mid t \in A\}$. The orbit of x is the set xT; the orbit closure of x, the set x is an orbit closure and x does not properly contain an orbit closure.

In what follows we shall be dealing with uniform spaces; for the properties of such spaces we refer to [4]. We alter the notation in writing $x\alpha$ instead of $V_{\alpha}(x)$ for "the neighborhood of x of index α ." The group T is called equicontinuous at $x \in X$, provided the collection of mappings $\{\pi^t | t \in T$, where $\pi^t(x) = xt\}$ is equicontinuous at x, i.e. for each index α of X there exists an index β of X such that $x\beta t \subset xt\alpha$ for all $t \in T$. The group T is called equicontinuous provided it is equicontinuous at each point of X. The group T is called uniformly equicontinuous provided the collection of mappings $\{\pi^t | t \in T\}$ is uniformly equicontinuous, i.e. for each index α of X there exists an index α of X such that $x\beta t \subset xt\alpha$ for all $t \in T$ and all $x \in X$.

Let T be a topological group and let $A \subset T$, then A is said to be *left* (right) syndetic in T provided that T = AK (T = KA) for some compact subset K of T. If T is abelian these two notions coincide, and we simply say that A is syndetic. The point $x \in X$ is said to be almost periodic under T provided that for each index α of X, there exists a left syndetic subset A of T such that $xA \subset x\alpha$. A point $x \in X$ is said to be discretely almost periodic under T provided that for each index α

Presented to the Society, April 25, 1953; received by the editors December 20, 1952.

¹ Numbers in brackets refer to the references cited at the end of the paper.

of X there exists a set A in T and a finite set F in T such that T = AF and $xA \subset x\alpha$ (i.e. x is almost periodic relative to the discrete topology in T). The group T is said to be almost periodic provided that for each index α of X, there exists a left syndetic subset A of T such that $xA \subset x\alpha$ for all $x \in X$. The group T is said to be discretely almost periodic provided that for each index α of X, there exists a set A in T and a finite set F in T such that T = AF and $xA \subset x\alpha$, for all $x \in X$ (i.e. T is almost periodic relative to its discrete topology).

Let Y be a topological space, X a uniform space, and let Φ be a class of mappings of Y into X. Let α be an index of X, define $\alpha^* = \{(\phi, \psi) | (\phi(y), \psi(y)) \in \alpha \text{ for all } y \in Y\}$, and let \mathcal{U} be the uniformity of X; then $\{\alpha^* | \alpha \in \mathcal{U}\}$ is a uniformity base and is said to generate the space index uniformity of Φ . Let T be a topological group, X a uniform space, and Φ the class of all the right uniformly continuous functions on T to X; and let Φ be provided with its space index uniformity. Let $\nu: \Phi \times T \to \Phi$ be defined by $\nu(\phi, t) = \psi$, where $\psi(\tau) = \phi(t\tau)$ for all $\tau \in T$. The uniformly equicontinuous transformation group (Φ, T, ν) is called the left uniform functional transformation group over T to X.

2. Kakutani's theorem.

THEOREM (KAKUTANI). Let X be a compact metric space, let R be the real numbers, considered as a topological group under addition, with the usual topology, let (X, R, π) be a transformation group such that X is minimal, and let f be a continuous mapping of X into R. For $x' \in X$, let $f_{x'}$ be the function from R to R defined by $f_{x'}(t) = f(x't)$ for all $t \in R$. Then R is equicontinuous if and only if there exists a point $x' \in X$ such that for every continuous $f: X \rightarrow R$, $f_{x'}$ is a Bohr almost periodic function [1].

We sketch the proof of the sufficiency of the condition. Let x' be a point with the required property; it will be sufficient to show that R is uniformly equicontinuous on the orbit of x', a set dense in X. Let $\epsilon > 0$. The Stone-Weierstrass theorem enables us to find a set $\{f_i(x), g_i(x) | i=1, 2, \cdots, N\}$ of continuous functions on X to R such that

$$\left| \rho(x, y) - \sum_{i=1}^{N} f_i(x)g_i(y) \right| < \frac{\epsilon}{4} \quad \text{for all } x, y \in X,$$

where ρ is the metric in X. By the hypotheses of the theorem the functions $f_i(x't)$, $g_i(x't)$ will be uniformly bounded in absolute value (by M>0) and will be Bohr almost periodic functions. Let $\epsilon' = \epsilon/8MN$. Then the set of common translation numbers for these functions is

relatively dense in R, i.e. there exists a number $k(\epsilon') > 0$ such that for any real number t, there exists s, $0 \le s \le k(\epsilon')$, such that

$$\left| f_i(x'(u+t)) - f_i(x'(u+s)) \right| < \epsilon',$$

$$\left| g_i(x'(u+t)) - g_i(x'(u+s)) \right| < \epsilon'.$$

for all $u \in R$. Let $\delta > 0$ such that $\rho(x, y) < \delta$ implies $\rho(xs, ys) < \epsilon/4$ for all s with $0 \le s \le k(\epsilon')$. Then if $\rho(x't_1, x't_2) < \delta$ we have

$$\rho(x'(t_1+t), x'(t_2+t))
\leq \left| \rho(x'(t_1+t), x'(t_2+t)) - \sum_{i=1}^{N} f_i(x'(t_1+t))g_i(x'(t_2+t)) \right|
+ \left| \sum_{i=1}^{N} f_i(x'(t_1+t))g_i(x'(t_2+t)) - \sum_{i=1}^{N} f_i(x'(t_1+s))g_i(x'(t_2+s)) \right|
+ \left| \sum_{i=1}^{N} f_i(x'(t_1+s))g_i(x'(t_2+s)) - \rho(x'(t_1+s), x'(t_2+s)) \right|
+ \rho(x'(t_1+s), x'(t_2+s)) < \epsilon, \qquad \text{for all } t \in \mathbb{R}.$$

- 3. Generalized theorem. We now generalize Kakutani's theorem, but before we state the generalization we shall require one further definition. Let (X, T, π) be a transformation group, let Y be a uniform space, and let f be a mapping X into Y. Define $f_x(t) = f(xt)$ for all $t \in T$. It is clear that f_x maps T into Y.
- 3.1 PRINCIPAL THEOREM. Let (X, T, π) be a transformation group, let X be a compact T_2 -space which is minimal under T and let T be abelian. Then T is equicontinuous if and only if there exists a point $x_0 \in X$ such that for every continuous mapping f of X into the real numbers, R, the function $f_{x_0}(t)$ is almost periodic in the left uniform functional transformation group over T to R.

We must first show that f_x is a point of Φ , the class of all right uniformly continuous mappings of T into R. We require the following lemma.

3.2 Lemma. Let (X, T, π) be a transformation group, let X be compact and let α be an index of X. Then there exists V, a neighborhood of e in T, such that $xV \subset x\alpha$ for all $x \in X$.

We omit the proof since it is quite straightforward. We now show that $f_* \in \Phi$. In fact we prove a somewhat more general theorem.

3.3 THEOREM. Let (X, T, π) be a transformation group, let X be compact, let Y be a uniform space, and let $f: X \rightarrow Y$ be continuous. Then f_x is a right uniformly continuous mapping of T into Y.

PROOF. Since X is compact, f is uniformly continuous on X to Y. Let γ be an index of Y, and let δ be an index of X such that $(x, y) \in \delta$ implies $(f(x), f(y)) \in \gamma$. By 3.2 we can find a neighborhood V of ϵ in T such that $v \in V$ implies $(x, xv) \in \delta$ for all $x \in X$. Thus $(f(x), f(xv)) \in \gamma$ for all $x \in X$ and all $v \in V$. Let $t \in T$ and let xt = y; then for $v \in V$, $(f(y), f(yv)) \in \gamma$ or $(f(xt), f(xtv)) \in \gamma$, or $(f_x(t), f_x(tv)) \in \gamma$. Thus for any $t \in T$ and any $s \in tV$ we have $(f_x(t), f_x(s)) \in \gamma$. This completes the proof.

We are now in a position to prove one half (the necessity) of the principal theorem. In fact, we can prove a bit more.

3.4 THEOREM. Let (X, T, π) be a transformation group, let X be compact, let Y be a uniform space, let f be a continuous mapping of X into Y, let T be equicontinuous and abelian, and let $x \in X$. Then f_x is an almost periodic point of (Φ, T, ν) , the left uniform functional transformation group over T to Y.

PROOF. Since X is compact T is uniformly equicontinuous. Gottschalk has shown [2] that this implies that T is discretely almost periodic. Let $x \in X$ be fixed; by 3.3, $f_x \in \Phi$. Since X is compact, f is uniformly continuous on X to Y. Let Λ be an index of Φ , then there exists γ , an index of Y, such that $\gamma^* \subset \Lambda$; and then there exists δ , an index of X, such that $f(xt\delta) \subset f(xt)\gamma$ for all $t \in T$. Since T is almost periodic, there exists A, a left syndetic subset of T, such that for all $y \in X$, $yA \subset y\delta$, in particular then $xtA \subset xt\delta$ for all $t \in T$. Thus $f_x(tA) = f(xtA) \subset f(xt\delta) \subset f(xt)\gamma = f_x(t)\gamma$ for all $t \in T$, whence $f_xA \subset f_x\gamma^* \subset f_x\Lambda$. This completes the proof.

The principal difficulty in the proof of our generalization of Kakutani's theorem is that since we no longer have a metric in X, we are no longer able to use the Stone-Weierstrass theorem to approximate it. We use the following lemma to overcome this difficulty.

3.5 LEMMA. Let (X, T, π) be a transformation group, let X be compact and minimal under T, and let T be abelian. Let f be a continuous mapping of X into Y, a uniform space, and suppose there exists $x_0 \in X$ such that f_{x_0} is almost periodic in the left uniform functional transformation group over T to Y, (Φ, T, ν) . Then f_x is almost periodic for each $x \in X$, and in fact for each index Λ of Φ there exists a syndetic subset A of T such that $f_x A \subset f_x \Lambda$ for all $x \in X$.

PROOF. Let Λ be an index of Φ ; then there exists an index α of Y such that $\alpha^* \subset \Lambda$. Let β be a symmetric index of Y such that $\beta^* \subset \alpha$.

Since f_{x_0} is almost periodic, there exists a syndetic subset A of T such that $f_{x_0}(At) \subset f_{x_0}(t)\beta$ for all $t \in T$, or $f(x_0At) \subset f(x_0t)\beta$. Then for all $t_0 \in T$, $f(x_0At_0t) \subset f(x_0t_0t)\beta$, and since T is abelian, we have $f(x_0t_0At) \subset f(x_0t_0t)\beta$ for all t_0 and $t \in T$.

Since X is compact, f is uniformly continuous; thus there exists an index γ of X such that $f(x\gamma) \subset f(x)\beta$ for all $x \in X$. Let $a \in A$ and $t \in T$ be fixed. Since π^t and π^{at} are uniformly continuous, X being compact, we can select a symmetric index δ of X so that $x\delta t \subset xt\gamma$ and $x\delta at \subset xat\gamma$ for all $x \in X$. Since X is minimal there exists $t_1 \in T$ such that $x_0t_1 \in x\delta$, whence $x_0t_1t \in x\delta t \subset xt\gamma$. Thus

$$(1) f(x_0t_1t) \in f(xt\gamma) \subset f(xt)\beta.$$

From the first part of the proof we have

$$(2) f(x_0t_1at) \in f(x_0 t_1t)\beta.$$

Now $x_0t_1 \in x\delta$, and since δ is symmetric, $x \in x_0t_1\delta$; therefore $xat \in x_0t_1\delta at \subset x_0t_1at\gamma$, whence

(3)
$$f(xat) \in f(x_0t_1at\gamma) \subset f(x_0t_1at)\beta.$$

From (1), (2), and (3) we have $f(xat) \in f(xt)\beta^3 \subset f(xt)\alpha$, and since a and t were arbitrary, $f(xAt) \subset f(xt)\alpha$ for all $t \in T$. Thus $f_xA \subset f_x\alpha^* \subset f_x\Lambda$. This completes the proof.

We require a further lemma.

3.6 Lemma. Let (X, T, π) be a transformation group, let X be compact, and let T be abelian. Let f and g be continuous mappings of X into R, the reals. Let $x \in X$ be fixed, and let f_x and g_x be almost periodic in (Φ, T, ν) , the left uniform functional transformation group over T to R. Then for each $\epsilon > 0$, there exists $E \subset T$ and a finite set $H \subset T$ such that EH = T and such that $b \in E$ implies $|f(xbt) - f(xt)| < \epsilon$ and $|g(xbt) - g(xt)| < \epsilon$ for all $t \in T$.

PROOF. We prove that f_x is discretely almost period. Let Λ be an index of Φ ; then there exists α , an index of R, such that $\alpha^* \subset \Lambda$. Let β be a symmetric index of R such that $\beta^2 \subset \alpha$. Since X is compact, $f: X \to R$ is uniformly continuous. Let γ be an index of X such that $f(x\gamma) \subset f(x)\beta$ for all $x \in X$. By Lemma 3.2 there exists Y, a neighborhood of e in T, such that $xV \subset x\gamma$ for all $x \in X$. Since f_x is almost periodic, there exists $A \subset T$ and K, compact, in T with AK = T, such that $f_xA \subset f_x\beta^*$ or $f(xat) \subset f(xt)\beta$ for all $a \in A$ and all $t \in T$. Now K is compact and $K \subset U_{k \in K}kV$; therefore there exists a finite set $\{k_i\}_{i=1}^n = K'$ such that $K \subset K'V$. Let A' = AV; then A'K' = AVK' = AK = T, and A' is discretely syndetic in T. Let $a' \in A'$, $t \in T$, and a' = av where

 $a \in A$ and $v \in V$; then $f(xa't) = f(xavt) \in f(xvt)\beta$. Also $xvt = xtv \in xtV$ $\subset xt\gamma$ whence $f(xvt) \in f(xt)\beta$; therefore $f(xa't) \in f(xt)\beta^2 \subset f(xt)\alpha$ for all $a' \in A'$ and all $t \in T$, or $f_xA' \subset f_x\alpha^* \subset f_x\Lambda$. This completes the proof that f_x is discretely almost periodic. Similarly g_x is discretely almost periodic.

Define $A(\epsilon, f) = \{a \mid a \in T, |f(xat) - f(xt)| < \epsilon \text{ for all } t \in T\}$. We prove

(1)
$$A(\epsilon, f) = A^{-1}(\epsilon, f)$$

and

(2)
$$A^{2}(\epsilon, f) \subset A(2\epsilon, f).$$

Let $a \in A(\epsilon, f)$, then $|f(xat) - f(xt)| < \epsilon$ for all $t \in T$. Let t' = at or $t = a^{-1}t'$, then $|f(xaa^{-1}t') - f(xa^{-1}t')| < \epsilon$ or $|f(xt') - f(xa^{-1}t')| < \epsilon$ for all $t' \in T$, whence $a^{-1} \in A(\epsilon, f)$. This completes the proof of (1).

Let a, $a' \in A(\epsilon, f)$; then $|f(xaa't) - f(xt)| \le |f(xaa't) - f(xa't)| + |f(xa't) - f(xt)| < \epsilon + \epsilon = 2\epsilon$. Thus $aa' \in A(2\epsilon, f)$. This completes the proof of (2).

Let $\epsilon > 0$, then since f_x and g_x are discretely almost periodic, there exist $F = \{t_i\}_{i=1}^n$ and $G = \{s_j\}_{j=1}^m$, such that $A(\epsilon/2, f)F = T$ and $A(\epsilon/2, g)G = T$. Let $E_{ij} = [A(\epsilon/2, f)t_i] \cap [A(\epsilon/2, g)s_j]$, then $T = \bigcup_{i=1}^n \bigcup_{j=1}^m E_{ij}$. Let $E = A(\epsilon, f) \cap A(\epsilon, g)$. Now for some i and j, $E_{ij} \neq \emptyset$; thus let $u \in E_{ij}$. We prove $Eu \supseteq E_{ij}$. Let $v \in E_{ij}$, then $v = at_i$, since $E_{ij} \subset A(\epsilon/2, f)t_i$. Now $u \in E_{ij}$, whence $u = a't_i$, where $a' \in A(\epsilon/2, f)$ or $t_i = a'^{-1}u$; therefore $v = at_i = aa'^{-1}u$ or $vu^{-1} = aa'^{-1}$. But by (1) and (2), $[A(\epsilon/2, f)][A^{-1}(\epsilon/2, f)] \subset A(\epsilon, f)$; therefore $vu^{-1} \in A(\epsilon, f)$. Similarly $vu^{-1} \in A(\epsilon, g)$, whence $vu^{-1} \in E$ or $v \in Eu$. This completes the proof that $Eu \supseteq E_{ij}$. Now for each $E_{ij} \neq \emptyset$ select $r_k \in E_{ij}$ and suppose there are N such r_k . Then $\bigcup_{k=1}^N Er_k = \bigcup_{i=1}^n \bigcup_{j=1}^m E_{ij} = T$, and E is discretely syndetic. Furthermore, by definition E has the property that $b \in E$ implies $|f(xbt) - f(xt)| < \epsilon$ and $|g(xbt) - g(xt)| < \epsilon$ for all $t \in T$. This completes the proof of the lemma.

An application of Urysohn's lemma enables us to prove our last lemma.

3.7 Lemma. Let X be a compact T_2 -space; then for each index α of X there exists a finite class of functions $\{f_i|i=1, 2, \cdots, N\}$ on X to the real numbers such that $|f_i(x)-f_i(y)| < 1/2$ for $i=1, 2, \cdots, N$ implies $x \in y\alpha$.

We are now in a position to prove the second half (sufficiency) of the principal theorem, 3.1.

PROOF (sufficiency). We show T is almost periodic. Let γ be an index of X. By 3.7 there exists a finite class of functions $\{f_i | i=1, 2, \cdots, n\}$ such that $|f_i(x)-f_i(y)| < 1/2$ for $i=1, 2, \cdots, n$

implies $x \in y\gamma$. By 3.5 there exist A_i for each i, $1 \le i \le n$, each syndetic in T, such that $|f_i(xA_it) - f_i(xt)| < 1/2$ for all $x \in X$ and for all $t \in T$. By 3.6 there exists a single A such that $|f_i(xAt) - f_i(xt)| < 1/2$ for all i, $1 \le i \le n$, and for all $x \in X$ and all $t \in T$. Thus $xAt \subset xt\gamma$ for all $x \in X$ and all $t \in T$, whence T is almost periodic. Finally by [2, Theorem 2], T is equicontinuous. This complete the proof.

REFERENCES

- 1. H. Bohr, Almost periodic functions, New York, 1947.
- 2. W. H. Gottschalk, Almost periodicity, equi-continuity and total boundedness, Bull. Amer. Math. Soc. vol. 52 (1946) pp. 633-636.
 - 3. W. H. Gottschalk and G. A. Hedlund, Topological dynamics (forthcoming).
- 4. A. Weil, Sur les espaces à structure uniforme et sur la topologie générale, Actualités Scientifiques et Industrielles, Paris, 1938.

YALE UNIVERSITY