RATIONAL NORMAL MATRICES SATISFYING THE
INCIDENCE EQUATION

A. A. ALBERT

1. Introduction. An incidence matrix 4 of a finite projective plane
of order m is an n-rowed square matrix 4 with nonnegative integral
elements such that

(1) B=AA'=mI+ N,

where n=m2+4+m+1, I is the n-rowed identity matrix, and all ele-
ments of N are 1. It can then be shown that every element of 4 is
either 0 or 1, that there are precisely m+1 nonzero elements in every
row and column of A4, and that it follows that

() A'A = B.

Thus an incidence matrix is a normal integral matrix satisfying the
incidence equation (1).
The following result is also known:!

BRUCK-RYSER THEOREM. Let m=1, 2 (mod 4), and let there exist a
rational matrix P satisfying the incidence equation PP’ =mI+ N. Then
m 1is a sum of two squares.

The converse of this theorem is also true and provides what may
be thought of as a rational approximation to an incidence matrix. The
purpose of this note is that of giving a constructive proof of the fol-
lowing closer approximation.

THEOREM. Let m be a sum of two squares. Then there exists a normal
matrix S with rational elements such that SS'=mI+ N.

2. Algebraic properties. If PP'=SS5"= B, then (P-1S) (P1S)'=1I"
Hence, if P and S are any two solutions of the incidence equation,
there exists an orthogonal matrix C such that

3) S = PC.

When P and S are rational solutions the orthogonal matrix C must
also be rational. Conversely if S=PC, where C is orthogonal and P
satisfies the incidence equation, then S satisfies the incidence equa-
tion. We note the following stronger result:
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1 See R. H. Bruck and H. J. Ryser, The nonexistence of certain finite projective
planes, Canadian Journal of Mathematics vol. 1 (1949) pp. 88-93.
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LEMMA 1. The matrix S= PC 1is normal if and only if C'P'PC=PP’.
When S is a normal solution of the incidence equation the matrix T =SG
15 also a normal solution if and only if G is an orthogonal matrix such
that the sum of the elements in every row and column of either G or —G
s 1.

For if Sis normal we see that S§'=PP'=S8'S=C'(P'P)C.1f T=SG
is a second normal solution, then T"T=G'S'SG=TT'=G'(SS")G,

that is, G’'BG =B. But B=mI+ N, and the orthogonal matrix G com-
mutes with B if and only if

4 GNG' = N, GN = NG.
However
(5) N = u,u’ u = (1’ 1,---, 1)1

and (4) is equivalent to
(6) N = v’y v = uG.

The sth element of the row vector v is the sum s; of the elements in
the ith column of G, and (6) implies that s;s;=1. Hence =1 and
si=1 or —1. Since s;5;=1 the sums s; have the same sign and are
equal. The second form of (4) implies that the sum of the elements
in the 7th row of G is equal to the column sum s;, and our result is
proved.

3. A rational solution and a basic equation. We shall assume hence-
forth that

) m = a® + b,

for integers a and b. Then the n#-rowed square matrix

0 ¢ ¢ ---¢
d HO---0
8 P=|d 0 H---0
d 0 0---H

defined by the formulas
a—b a+b a b
9) c=( , ), d=(1,1), H=( )

m m -b a

is a solution of the incidence equation. Indeed the length of the first
row of P is kcc’ =km=*[(a —b)?+ (a+b)?] = 2km—2m =m+1, where we
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have introduced the notation
m:4m

(10) k=

The length of every other row is 1+4-a2+52=1+m and so the diagonal
elements of PP’ are m+1. The inner product of the 7th row of P and
the jth row is 1 trivially for 4>j>1. The remaining inner prod-
ucts are [a(a—bd)+b(a+b)]m 1= (a2+b)m1=1 and [—b(a—Db)
+a(a+b)]m1=1, and so we have proved that

(11) PP' = B.
Let us now compute
(12) P'P=ml+ M.
By direct computation using (8) we see that
(13) M= mizw' w,
where
(14) w= (m:a—>ba+bd---,a—0>ba+0d).

Observe that ww’ =m*+k[(a—b)%+(a+b)?] =m*+m(m2+m), that
is,

(15) ww' = mn.

We shall attempt to find a rational orthogonal matrix C such that
PC is a normal matrix. Our success will depend on a rational solution
of the equation x2—my?= —n, and we shall write the result as

(16) 12 — ms? = — na?,

for integers s and ¢. To compute s and ¢ we note that (m+1)2—m(1)?
=m?+2m-+1—m=mn, and that b2—m(1)2= —a? But then (m+1
+m'?) (b+m'/?) =t+sm''* where

17) =bm+1)+m s=b+ @m+1).
It should now be clear that t2—ms2= —na?.

4. A rational normal solution. We shall determine C as the product
C{ Co, where Cy and C,; are orthogonal matrices such that

) , (0 0
(18) CoNCy = CiMC1 = ( )
n,
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Moreover

(19) Co=Di'Ey, Ci=DiE,

where E, and E, will be taken to be sntegral matrices, Dy and D, will
be taken to be diagonal matrices. It will then follow that

(20) C = Ey(DDy))E,

will be rational if and only if DD, is rational.
Write

=010 -10---,0),
p2=(0,1,0,1,0, —2,---,0),
p:i=(,10101-.--,010, —%0,---,0),---,
pr1=(0,1,0,1,---,0,1,0,1 — £ 0).
Thus p; has 7 elements 1, followed by the element —7, and these ele-

ments are separated by zeros. Since the rows of N are all equal it
should be clear that p;N =0. But it is actually evident that

(21)

(22) N = piM = 0.
Similarly we write
(23) ¢;j = (0,0,1,0,1,---,0,1,0, —4,---,0) (j=1,---, k—1)
and have
(24) g;N = ¢;M = 0.
Define
] ]
}k-l }k-l
% b
(25) Ey=] - , E, =1 - ,
‘qk—l .Qk-l
% 2
¥ v
% L w
where we have already defined k=(m?*+m)/2, u=(1, 1, - -, 1),

and w=(m? a—b,a+b, - - -, a—b, a+d). Define
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(26) z2=0,¢a4+bb—-0g,a+bb—a,---,a+bb—a)

and

@27 ov=(-m-—-1,e¢—ba+ba—ba+d---,a—0ba+0b).

The first n—3 rows of E, coincide with those of E; and are clearly
pairwise orthogonal characteristic vectors of both N and M. The

condition that a vector x=(x;, - - -, xa) shall be orthogonal to
Pl! Tty Pk—l, qy * Gk is that
(28) X = X4 = Xg= *°° = Xp_1, X3 = Xg =+ = %X,

and w, 2z and v satisfy this condition. By (13) we have

1 1
M = — (zw)w =0, M =—ow'w=0,
m2 mZ
(29)

1
wM = — w(w'w) = nw,
m2

where it should be clear that zw’=~Fk[(a+b)(a—b)+(b—a)(a+Dd)]
=0=2"and thatvw' = —m*(m+1)+2(2m) = —m?*(m4+1)+(m2+m)m
=0.

It remains to compute the lengths of the rows of E,. Clearly p:p!
=1+42=4(3+1) =q,q!. Next we see that zz’=Ek[(a+b)+(a—b)?]
=2km=m?*(m-+1) and that v’ =(m+1)2+2km=(m+1)(m+1+m?)
=n(m+1). We have proved the following result:

LEMMA 2. Let E, be given by (25) and D, be the diagonal matrix
D, = diag {(1-2)1/2, (2-3)172, - - -, ((k — 1)E)1/2, (1-2)172,
(2-3)12, - - -, ((k — DE)V2, m(m + 1)V (n(m + 1))V/2, mal/?},
Then Cy=D['E, is an orthogonal matrix such that C;MC{ satisfies (18).

(30)

We next write x=(xy, - - -, x,) where
x1=—28k, X2 =24=---=2x,,=a+1¢

(1)

X3 =X =" °* =X, =a — L

Then xx’ =4a%k?+2k(a2+12) = (m*+m) [(m2+m+1)a2+12] = (m*+m)
(na®+t%). By (16) we have the value

(32) zx’ = m*s*(m + 1).

We similarly write y=(y1, - - -, ¥a), ¥2=94= - =Yn1, V3=
= ... =y, where

(33) y1=—2k, yr=1t—ma, y3=1+ na.
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Then yy' =4k%2+k[(t—na)?+(t+na)?] = (m+m) [(m*+m)e2+22
+n%a?] = (m*+m)(nt*+n%a?). Using (16) we have

(34) yy' = misn(m + 1).

The first n— 3 rows of E, are already known to be pairwise orthogonal
and orthogonal to x, y, . It should now be clear that since xu’
= —2ka+k(a+t+a—t)=0and yu'= —2kt+k[t—na+t+na] =0 the
vectors x, y are orthogonal characteristic vectors of N=u'u. More-
over

xy' = (—2k)%t + k[(a + §)(t — na) + (a — &)(¢t + na)]
= 4k%t + k(1 4+ ot — na® — nat + at — 1* + na® — nat)
= 4k%t + 2kat(1 — n) = Osincel — n = — (m®* 4+ m) = — 2k
This completes our proof of the fact that the rows of the matrix E,

form a set of # pairwise orthogonal characteristic vectors of N. De-
fine

D, = diag {(1-2)!72, (2:3)!2, - - -, ((k — 1)R)¥12, (1-2)'12,
2:3)12, - - -, ((k — 1)B)YV2, ms(m + 1)1/2, ms(n(m + 1))1/2, nllz}’
and see that
D = DD, = diag {1-2,2-3,---, k*— £, 1.2,2.3,-- -,
k2 — k, m¥s(m + 1), msn(m + 1), mn}
is an integral matrix. We have shown that for this D the matrix
37 C = ED'E,

is a rational orthogonal matrix, and PC is a rational normal solution
of the incidence equation. This completes our constructive proof.

(35)

(36)
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