RATIONAL NORMAL MATRICES SATISFYING THE INCIDENCE EQUATION

A. A. ALBERT

1. Introduction. An incidence matrix A of a finite projective plane of order m is an n-rowed square matrix A with nonnegative integral elements such that

$$(1) B = AA' = mI + N.$$

where $n=m^2+m+1$, I is the n-rowed identity matrix, and all elements of N are 1. It can then be shown that every element of A is either 0 or 1, that there are precisely m+1 nonzero elements in every row and column of A, and that it follows that

$$(2) A'A = B.$$

Thus an incidence matrix is a normal integral matrix satisfying the incidence equation (1).

The following result is also known:1

BRUCK-RYSER THEOREM. Let $m \equiv 1$, 2 (mod 4), and let there exist a rational matrix P satisfying the incidence equation PP' = mI + N. Then m is a sum of two squares.

The converse of this theorem is also true and provides what may be thought of as a rational approximation to an incidence matrix. The purpose of this note is that of giving a constructive proof of the following closer approximation.

THEOREM. Let m be a sum of two squares. Then there exists a normal matrix S with rational elements such that SS' = mI + N.

2. Algebraic properties. If PP' = SS' = B, then $(P^{-1}S)' = I^{\bullet}$ Hence, if P and S are any two solutions of the incidence equation, there exists an orthogonal matrix C such that

$$(3) S = PC.$$

When P and S are rational solutions the orthogonal matrix C must also be rational. Conversely if S = PC, where C is orthogonal and P satisfies the incidence equation, then S satisfies the incidence equation. We note the following stronger result:

Received by the editors November 17, 1952.

¹ See R. H. Bruck and H. J. Ryser, The nonexistence of certain finite projective planes, Canadian Journal of Mathematics vol. 1 (1949) pp. 88-93.

LEMMA 1. The matrix S = PC is normal if and only if C'P'PC = PP'. When S is a normal solution of the incidence equation the matrix T = SG is also a normal solution if and only if G is an orthogonal matrix such that the sum of the elements in every row and column of either G or G is 1.

For if S is normal we see that SS' = PP' = S'S = C'(P'P)C. If T = SG is a second normal solution, then T'T = G'S'SG = TT' = G'(SS')G, that is, G'BG = B. But B = mI + N, and the orthogonal matrix G commutes with B if and only if

$$GNG' = N, \qquad GN = NG.$$

However

(5)
$$N = u'u, \quad u = (1, 1, \dots, 1),$$

and (4) is equivalent to

$$(6) N = v'v, v = uG.$$

The *i*th element of the row vector v is the sum s_i of the elements in the *i*th column of G, and (6) implies that $s_i s_j = 1$. Hence $s_i^2 = 1$ and $s_i = 1$ or -1. Since $s_i s_j = 1$ the sums s_i have the same sign and are equal. The second form of (4) implies that the sum of the elements in the *i*th row of G is equal to the column sum s_i , and our result is proved.

3. A rational solution and a basic equation. We shall assume henceforth that

$$m=a^2+b^2,$$

for integers a and b. Then the n-rowed square matrix

(8)
$$P = \begin{cases} 0 & c & c & \cdots & c \\ d' & H & 0 & \cdots & 0 \\ d' & 0 & H & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ d' & 0 & 0 & \cdots & H \end{cases}$$

defined by the formulas

(9)
$$c = \left(\frac{a-b}{m}, \frac{a+b}{m}\right), \qquad d = (1, 1), \qquad H = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

is a solution of the incidence equation. Indeed the length of the first row of P is $kcc' = km^{-2}[(a-b)^2 + (a+b)^2] = 2km^{-2}m = m+1$, where we

have introduced the notation

$$(10) k = \frac{m^2 + m}{2}.$$

The length of every other row is $1+a^2+b^2=1+m$ and so the diagonal elements of PP' are m+1. The inner product of the *i*th row of P and the *j*th row is 1 trivially for i>j>1. The remaining inner products are $[a(a-b)+b(a+b)]m^{-1}=(a^2+b^2)m^{-1}=1$ and $[-b(a-b)+a(a+b)]m^{-1}=1$, and so we have proved that

$$(11) PP' = B.$$

Let us now compute

$$(12) P'P = mI + M.$$

By direct computation using (8) we see that

$$M = \frac{1}{m^2} w'w,$$

where

(14)
$$w = (m^2, a - b, a + b, \dots, a - b, a + b).$$

Observe that $ww' = m^4 + k[(a-b)^2 + (a+b)^2] = m^4 + m(m^2 + m)$, that is,

$$(15) ww' = m^2n.$$

We shall attempt to find a rational orthogonal matrix C such that PC is a normal matrix. Our success will depend on a rational solution of the equation $x^2 - my^2 = -n$, and we shall write the result as

$$(16) t^2 - ms^2 = -na^2,$$

for integers s and t. To compute s and t we note that $(m+1)^2 - m(1)^2 = m^2 + 2m + 1 - m = n$, and that $b^2 - m(1)^2 = -a^2$. But then $(m+1)^2 + m^{1/2}(b + m^{1/2}) = t + sm^{1/2}$ where

(17)
$$t = b(m+1) + m, \quad s = b + (m+1).$$

It should now be clear that $t^2 - ms^2 = -na^2$.

4. A rational normal solution. We shall determine C as the product $C_1' C_0$, where C_0 and C_1 are orthogonal matrices such that

(18)
$$C_0 N C_0' = C_1 M C_1' = \begin{pmatrix} 0 & 0 \\ 0 & n \end{pmatrix}.$$

Moreover

(19)
$$C_0 = D_0^{-1} E_0, \quad C_1 = D_1^{-1} E_1,$$

where E_0 and E_1 will be taken to be *integral* matrices, D_0 and D_1 will be taken to be *diagonal* matrices. It will then follow that

(20)
$$C = E_1'(D_0D_1)^{-1}E_0$$

will be rational if and only if D_0D_1 is rational. Write

$$p_1 = (0, 1, 0, -1, 0, \cdots, 0),$$

(21)
$$p_2 = (0, 1, 0, 1, 0, -2, \cdots, 0),$$

$$p_i = (0, 1, 0, 1, 0, 1, \cdots, 0, 1, 0, -i, 0, \cdots, 0), \cdots,$$

$$p_{k-1} = (0, 1, 0, 1, \cdots, 0, 1, 0, 1 - k, 0).$$

Thus p_i has i elements 1, followed by the element -i, and these elements are separated by zeros. Since the rows of N are all equal it should be clear that $p_iN=0$. But it is actually evident that

$$p_i N = p_i M = 0.$$

Similarly we write

(23)
$$q_i = (0, 0, 1, 0, 1, \cdots, 0, 1, 0, -j, \cdots, 0) \ (j = 1, \cdots, k-1)$$
 and have

$$q_j N = q_j M = 0.$$

Define

(25)
$$E_{0} = \begin{bmatrix} p_{1} \\ \vdots \\ p_{k-1} \\ q_{1} \\ \vdots \\ q_{k-1} \\ x \\ y \\ u \end{bmatrix}, \quad E_{1} = \begin{bmatrix} p_{1} \\ \vdots \\ p_{k-1} \\ q_{1} \\ \vdots \\ q_{k-1} \\ z \\ v \\ w \end{bmatrix},$$

where we have already defined $k = (m^2 + m)/2$, $u = (1, 1, \dots, 1)$, and $w = (m^2, a-b, a+b, \dots, a-b, a+b)$. Define

$$(26) z = (0, a+b, b-a, a+b, b-a, \cdots, a+b, b-a)$$

and

$$(27) v = (-m-1, a-b, a+b, a-b, a+b, \cdots, a-b, a+b).$$

The first n-3 rows of E_0 coincide with those of E_1 and are clearly pairwise orthogonal characteristic vectors of both N and M. The condition that a vector $x = (x_1, \dots, x_n)$ shall be orthogonal to $p_1, \dots, p_{k-1}, q_1, \dots, q_{k-1}$ is that

$$(28) x_2 = x_4 = x_6 = \cdots = x_{n-1}, x_3 = x_5 = \cdots = x_n,$$

and w, z and v satisfy this condition. By (13) we have

(29)
$$zM = \frac{1}{m^2}(zw')w = 0, \quad vM = \frac{1}{m^2}vw'w = 0,$$
$$wM = \frac{1}{m^2}w(w'w) = nw,$$

where it should be clear that zw' = k[(a+b)(a-b)+(b-a)(a+b)]= 0 = zv' and that $vw' = -m^2(m+1)+k(2m) = -m^2(m+1)+(m^2+m)m$ = 0.

It remains to compute the lengths of the rows of E_1 . Clearly $p_i p_i' = i + i^2 = i(i+1) = q_i q_i'$. Next we see that $zz' = k \left[(a+b)^2 + (a-b)^2 \right] = 2km = m^2(m+1)$ and that $vv' = (m+1)^2 + 2km = (m+1)(m+1+m^2) = n(m+1)$. We have proved the following result:

LEMMA 2. Let E_1 be given by (25) and D_1 be the diagonal matrix

(30)
$$D_1 = \operatorname{diag} \left\{ (1 \cdot 2)^{1/2}, (2 \cdot 3)^{1/2}, \cdots, ((k-1)k)^{1/2}, (1 \cdot 2)^{1/2}, (2 \cdot 3)^{1/2}, \cdots, ((k-1)k)^{1/2}, m(m+1)^{1/2}, (n(m+1))^{1/2}, mn^{1/2} \right\}.$$

Then $C_1 = D_1^{-1}E_1$ is an orthogonal matrix such that C_1MC_1' satisfies (18).

We next write $x = (x_1, \dots, x_n)$ where

(31)
$$x_1 = -2ak, \ x_2 = x_4 = \cdots = x_{n-1} = a+t,$$

$$x_3 = x_5 = \cdots = x_n = a-t.$$

Then $xx' = 4a^2k^2 + 2k(a^2 + t^2) = (m^2 + m)[(m^2 + m + 1)a^2 + t^2] = (m^2 + m)$ $(na^2 + t^2)$. By (16) we have the value

$$(32) xx' = m^2 s^2 (m+1).$$

We similarly write $y = (y_1, \dots, y_n)$, $y_2 = y_4 = \dots = y_{n-1}$, $y_3 = y_5 = \dots = y_n$ where

(33)
$$y_1 = -2kt, \quad y_2 = t - na, \quad y_3 = t + na.$$

Then
$$yy' = 4k^2t^2 + k[(t-na)^2 + (t+na)^2] = (m^2 + m)[(m^2 + m)t^2 + t^2 + n^2a^2] = (m^2 + m)(nt^2 + n^2a^2)$$
. Using (16) we have

(34)
$$yy' = m^2s^2n(m+1).$$

The first n-3 rows of E_0 are already known to be pairwise orthogonal and orthogonal to x, y, u. It should now be clear that since xu' = -2ka + k(a+t+a-t) = 0 and yu' = -2kt + k[t-na+t+na] = 0 the vectors x, y are orthogonal characteristic vectors of N = u'u. Moreover

$$xy' = (-2k)^2 at + k[(a+t)(t-na) + (a-t)(t+na)]$$

$$= 4k^2 at + k(t^2 + at - na^2 - nat + at - t^2 + na^2 - nat)$$

$$= 4k^2 at + 2kat(1-n) = 0 \text{ since } 1 - n = -(m^2 + m) = -2k.$$

This completes our proof of the fact that the rows of the matrix E_0 form a set of n pairwise orthogonal characteristic vectors of N. Define

$$(35) D_0 = \operatorname{diag} \left\{ (1 \cdot 2)^{1/2}, (2 \cdot 3)^{1/2}, \cdots, ((k-1)k)^{1/2}, (1 \cdot 2)^{1/2}, (2 \cdot 3)^{1/2}, \cdots, ((k-1)k)^{1/2}, ms(m+1)^{1/2}, ms(n(m+1))^{1/2}, n^{1/2} \right\},$$

and see that

(36)
$$D = D_0 D_1 = \text{diag } \{1 \cdot 2, 2 \cdot 3, \dots, k^2 - k, 1 \cdot 2, 2 \cdot 3, \dots, k^2 - k, m^2 s(m+1), m s n(m+1), m n\}$$

is an integral matrix. We have shown that for this D the matrix

$$(37) C = E_1' D^{-1} E_0$$

is a rational orthogonal matrix, and PC is a rational normal solution of the incidence equation. This completes our constructive proof.

THE UNIVERSITY OF CHICAGO