RATIONAL NORMAL MATRICES SATISFYING THE INCIDENCE EQUATION

A. A. ALBERT

1. Introduction. An incidence matrix A of a finite projective plane of order m is an n-rowed square matrix A with nonnegative integral elements such that

$$
\begin{equation*}
B=A A^{\prime}=m I+N \tag{1}
\end{equation*}
$$

where $n=m^{2}+m+1, I$ is the n-rowed identity matrix, and all elements of N are 1. It can then be shown that every element of A is either 0 or 1 , that there are precisely $m+1$ nonzero elements in every row and column of A, and that it follows that

$$
\begin{equation*}
A^{\prime} A=B \tag{2}
\end{equation*}
$$

Thus an incidence matrix is a normal integral matrix satisfying the incidence equation (1).

The following result is also known: ${ }^{1}$
Bruck-Ryser Theorem. Let $m \equiv 1,2(\bmod 4)$, and let there exist a rational matrix P satisfying the incidence equation $P P^{\prime}=m I+N$. Then m is a sum of two squares.

The converse of this theorem is also true and provides what may be thought of as a rational approximation to an incidence matrix. The purpose of this note is that of giving a constructive proof of the following closer approximation.

Theorem. Let m be a sum of two squares. Then there exists a normal matrix S with rational elements such that $S S^{\prime}=m I+N$.
2. Algebraic properties. If $P P^{\prime}=S S^{\prime}=B$, then $\left(P^{-1} S\right)\left(P^{-1} S\right)^{\prime}=I^{-}$ Hence, if P and S are any two solutions of the incidence equation, there exists an orthogonal matrix C such that

$$
\begin{equation*}
S=P C . \tag{3}
\end{equation*}
$$

When P and S are rational solutions the orthogonal matrix C must also be rational. Conversely if $S=P C$, where C is orthogonal and P satisfies the incidence equation, then S satisfies the incidence equation. We note the following stronger result:

[^0]Lemma 1. The matrix $S=P C$ is normal if and only if $C^{\prime} P^{\prime} P C=P P^{\prime}$. When S is a normal solution of the incidence equation the matrix $T=S G$ is also a normal solution if and only if G is an orthogonal matrix such that the sum of the elements in every row and column of either G or $-G$ is 1 .

For if S is normal we see that $S S^{\prime}=P P^{\prime}=S^{\prime} S=C^{\prime}\left(P^{\prime} P\right) C$. If $T=S G$ is a second normal solution, then $T^{\prime} T=G^{\prime} S^{\prime} S G=T T^{\prime}=G^{\prime}\left(S S^{\prime}\right) G$, that is, $G^{\prime} B G=B$. But $B=m I+N$, and the orthogonal matrix G commutes with B if and only if

$$
\begin{equation*}
G: N G^{\prime}=N, \quad G N=N G \tag{4}
\end{equation*}
$$

However

$$
\begin{equation*}
N=u^{\prime} u, \quad u=(1,1, \cdots, 1) \tag{5}
\end{equation*}
$$

and (4) is equivalent to

$$
\begin{equation*}
N=v^{\prime} v, \quad v=u G \tag{6}
\end{equation*}
$$

The i th element of the row vector v is the sum s_{i} of the elements in the i th column of G, and (6) implies that $s_{i} s_{j}=1$. Hence $s_{i}^{2}=1$ and $s_{i}=1$ or -1 . Since $s_{i} s_{j}=1$ the sums s_{i} have the same sign and are equal. The second form of (4) implies that the sum of the elements in the i th row of G is equal to the column sum s_{i}, and our result is proved.
3. A rational solution and a basic equation. We shall assume henceforth that

$$
\begin{equation*}
m=a^{2}+b^{2} \tag{7}
\end{equation*}
$$

for integers a and b. Then the n-rowed square matrix

$$
P=\left(\begin{array}{ccccc}
0 & c & c & \cdots & c \tag{8}\\
d^{\prime} & H & 0 & \cdots & 0 \\
d^{\prime} & 0 & H & \cdots & 0 \\
. & . & \cdots & \cdots & \cdot \\
d^{\prime} & 0 & 0 & \cdots & H
\end{array}\right)
$$

defined by the formulas

$$
c=\left(\frac{a-b}{m}, \frac{a+b}{m}\right), \quad d=(1,1), \quad H=\left(\begin{array}{rr}
a & b \tag{9}\\
-b & a
\end{array}\right)
$$

is a solution of the incidence equation. Indeed the length of the first row of P is $k c c^{\prime}=k m^{-2}\left[(a-b)^{2}+(a+b)^{2}\right]=2 k m^{-2} m=m+1$, where we
have introduced the notation

$$
\begin{equation*}
k=\frac{m^{2}+m}{2} \tag{10}
\end{equation*}
$$

The length of every other row is $1+a^{2}+b^{2}=1+m$ and so the diagonal elements of $P P^{\prime}$ are $m+1$. The inner product of the i th row of P and the j th row is 1 trivially for $i>j>1$. The remaining inner products are $[a(a-b)+b(a+b)] m^{-1}=\left(a^{2}+b^{2}\right) m^{-1}=1$ and $[-b(a-b)$ $+a(a+b)] m^{-1}=1$, and so we have proved that

$$
\begin{equation*}
P P^{\prime}=B \tag{11}
\end{equation*}
$$

Let us now compute

$$
\begin{equation*}
P^{\prime} P=m I+M \tag{12}
\end{equation*}
$$

By direct computation using (8) we see that

$$
\begin{equation*}
M=\frac{1}{m^{2}} w^{\prime} w, \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
w=\left(m^{2}, a-b, a+b, \cdots, a-b, a+b\right) . \tag{14}
\end{equation*}
$$

Observe that $w w^{\prime}=m^{4}+k\left[(a-b)^{2}+(a+b)^{2}\right]=m^{4}+m\left(m^{2}+m\right)$, that is,

$$
\begin{equation*}
w w^{\prime}=m^{2} n . \tag{15}
\end{equation*}
$$

We shall attempt to find a rational orthogonal matrix C such that $P C$ is a normal matrix. Our success will depend on a rational solution of the equation $x^{2}-m y^{2}=-n$, and we shall write the result as

$$
\begin{equation*}
t^{2}-m s^{2}=-n a^{2} \tag{16}
\end{equation*}
$$

for integers s and t. To compute s and t we note that $(m+1)^{2}-m(1)^{2}$ $=m^{2}+2 m+1-m=n$, and that $b^{2}-m(1)^{2}=-a^{2}$. But then $(m+1$ $\left.+m^{1 / 2}\right)\left(b+m^{1 / 2}\right)=t+s m^{1 / 2}$ where

$$
\begin{equation*}
t=b(m+1)+m, \quad s=b+(m+1) \tag{17}
\end{equation*}
$$

It should now be clear that $t^{2}-m s^{2}=-n a^{2}$.
4. A rational normal solution. We shall determine C as the product $C_{1}^{\prime} C_{0}$, where C_{0} and C_{1} are orthogonal matrices such that

$$
C_{0} N C_{0}^{\prime}=C_{1} M C_{1}^{\prime}=\left(\begin{array}{ll}
0 & 0 \tag{18}\\
0 & n
\end{array}\right)
$$

Moreover

$$
\begin{equation*}
C_{0}=D_{0}^{-1} E_{0}, \quad C_{1}=D_{1}^{-1} E_{1}, \tag{19}
\end{equation*}
$$

where E_{0} and E_{1} will be taken to be integral matrices, D_{0} and D_{1} will be taken to be diagonal matrices. It will then follow that

$$
\begin{equation*}
C=E_{1}^{\prime}\left(D_{0} D_{1}\right)^{-1} E_{0} \tag{20}
\end{equation*}
$$

will be rational if and only if $D_{0} D_{1}$ is rational.
Write

$$
\begin{align*}
p_{1} & =(0,1,0,-1,0, \cdots, 0) \\
p_{2} & =(0,1,0,1,0,-2, \cdots, 0) \\
p_{i} & =(0,1,0,1,0,1, \cdots, 0,1,0,-i, 0, \cdots, 0), \cdots, \tag{21}\\
p_{k-1} & =(0,1,0,1, \cdots, 0,1,0,1-k, 0) .
\end{align*}
$$

Thus p_{i} has i elements 1 , followed by the element $-i$, and these elements are separated by zeros. Since the rows of N are all equal it should be clear that $p_{i} N=0$. But it is actually evident that

$$
\begin{equation*}
p_{i} N=p_{i} M=0 . \tag{22}
\end{equation*}
$$

Similarly we write
(23) $q_{j}=(0,0,1,0,1, \cdots, 0,1,0,-j, \cdots, 0)(j=1, \cdots, k-1)$ and have

$$
\begin{equation*}
q_{j} N=q_{j} M=0 . \tag{24}
\end{equation*}
$$

Define

$$
E_{0}=\left[\begin{array}{l}
p_{1} \tag{25}\\
\vdots \\
p_{k-1} \\
q_{1} \\
\vdots \\
q_{k-1} \\
x \\
y \\
u
\end{array}\right], \quad E_{1}=\left[\begin{array}{l}
p_{1} \\
\vdots \\
p_{k-1} \\
q_{1} \\
\vdots \\
q_{k-1} \\
z \\
v \\
w
\end{array}\right]
$$

where we have already defined $k=\left(m^{2}+m\right) / 2, u=(1,1, \cdots, 1)$, and $w=\left(m^{2}, a-b, a+b, \cdots, a-b, a+b\right)$. Define

$$
\begin{equation*}
z=(0, a+b, b-a, a+b, b-a, \cdots, a+b, b-a) \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
v=(-m-1, a-b, a+b, a-b, a+b, \cdots, a-b, a+b) . \tag{27}
\end{equation*}
$$

The first $n-3$ rows of E_{0} coincide with those of E_{1} and are clearly pairwise orthogonal characteristic vectors of both N and M. The condition that a vector $x=\left(x_{1}, \cdots, x_{n}\right)$ shall be orthogonal to $p_{1}, \cdots, p_{k-1}, q_{1}, \cdots, q_{k-1}$ is that

$$
\begin{equation*}
x_{2}=x_{4}=x_{6}=\cdots=x_{n-1}, \quad x_{3}=x_{5}=\cdots=x_{n}, \tag{28}
\end{equation*}
$$

and w, z and v satisfy this condition. By (13) we have

$$
\begin{gather*}
z M=\frac{1}{m^{2}}\left(z w^{\prime}\right) w=0, \quad v M=\frac{1}{m^{2}} v w^{\prime} w=0, \tag{29}\\
w M=\frac{1}{m^{2}} w\left(w^{\prime} w\right)=n w,
\end{gather*}
$$

where it should be clear that $z w^{\prime}=k[(a+b)(a-b)+(b-a)(a+b)]$ $=0=z v^{\prime}$ and that $v w^{\prime}=-m^{2}(m+1)+k(2 m)=-m^{2}(m+1)+\left(m^{2}+m\right) m$ $=0$.
It remains to compute the lengths of the rows of E_{1}. Clearly $p_{i} p_{i}^{\prime}$ $=i+i^{2}=i(i+1)=q_{i} q_{i}^{\prime}$. Next we see that $z z^{\prime}=k\left[(a+b)^{2}+(a-b)^{2}\right]$
$=2 k m=m^{2}(m+1)$ and that $v v^{\prime}=(m+1)^{2}+2 k m=(m+1)\left(m+1+m^{2}\right)$
$=n(m+1)$. We have proved the following result:
Lemma 2. Let E_{1} be given by (25) and D_{1} be the diagonal matrix

$$
\begin{align*}
& D_{1}=\operatorname{diag}\left\{(1 \cdot 2)^{1 / 2},(2 \cdot 3)^{1 / 2}, \cdots,((k-1) k)^{1 / 2},(1 \cdot 2)^{1 / 2},\right. \tag{30}\\
& \left.(2 \cdot 3)^{1 / 2}, \cdots,((k-1) k)^{1 / 2}, m(m+1)^{1 / 2} ;(n(m+1))^{1 / 2}, m n^{1 / 2}\right\} .
\end{align*}
$$

Then $C_{1}=D_{1}^{-1} E_{1}$ is an orthogonal matrix such that $C_{1} M C_{1}^{\prime}$ satisfies (18).
We next write $x=\left(x_{1}, \cdots, x_{n}\right)$ where

$$
\begin{align*}
& x_{1}=-2 a k, x_{2}=x_{4}=\cdots=x_{n-1}=a+t, \tag{31}\\
& x_{3}=x_{5}=\cdots=x_{n}=a-t .
\end{align*}
$$

Then $x x^{\prime}=4 a^{2} k^{2}+2 k\left(a^{2}+t^{2}\right)=\left(m^{2}+m\right)\left[\left(m^{2}+m+1\right) a^{2}+t^{2}\right]=\left(m^{2}+m\right)$ ($n a^{2}+t^{2}$). By (16) we have the value

$$
\begin{equation*}
x x^{\prime}=m^{2} s^{2}(m+1) \tag{32}
\end{equation*}
$$

We similarly write $y=\left(y_{1}, \cdots, y_{n}\right), y_{2}=y_{4}=\cdots=y_{n-1}, y_{3}=y_{5}$ $=\cdots=y_{n}$ where

$$
\begin{equation*}
y_{1}=-2 k t, \quad y_{2}=t-n a, \quad y_{3}=t+n a . \tag{33}
\end{equation*}
$$

Then $y y^{\prime}=4 k^{2} t^{2}+k\left[(t-n a)^{2}+(t+n a)^{2}\right]=\left(m^{2}+m\right)\left[\left(m^{2}+m\right) t^{2}+t^{2}\right.$ $\left.+n^{2} a^{2}\right]=\left(m^{2}+m\right)\left(n t^{2}+n^{2} a^{2}\right)$. Using (16) we have

$$
\begin{equation*}
y y^{\prime}=m^{2} s^{2} n(m+1) \tag{34}
\end{equation*}
$$

The first $n-3$ rows of E_{0} are already known to be pairwise orthogonal and orthogonal to x, y, u. It should now be clear that since $x u^{\prime}$ $=-2 k a+k(a+t+a-t)=0$ and $y u^{\prime}=-2 k t+k[t-n a+t+n a]=0$ the vectors x, y are orthogonal characteristic vectors of $N=u^{\prime} u$. Moreover

$$
\begin{aligned}
x y^{\prime} & =(-2 k)^{2} a t+k[(a+t)(t-n a)+(a-t)(t+n a)] \\
& =4 k^{2} a t+k\left(t^{2}+a t-n a^{2}-n a t+a t-t^{2}+n a^{2}-n a t\right) \\
& =4 k^{2} a t+2 k a t(1-n)=0 \text { since } 1-n=-\left(m^{2}+m\right)=-2 k .
\end{aligned}
$$

This completes our proof of the fact that the rows of the matrix E_{0} form a set of n pairwise orthogonal characteristic vectors of N. Define

$$
\begin{align*}
& D_{0}=\operatorname{diag}\left\{(1 \cdot 2)^{1 / 2},(2 \cdot 3)^{1 / 2}, \cdots,((k-1) k)^{1 / 2},(1 \cdot 2)^{1 / 2}\right. \tag{35}\\
& \left.\quad(2 \cdot 3)^{1 / 2}, \cdots,((k-1) k)^{1 / 2}, m s(m+1)^{1 / 2}, \operatorname{ms}(n(m+1))^{1 / 2}, n^{1 / 2}\right\}
\end{align*}
$$

and see that

$$
\begin{align*}
& D=D_{0} D_{1}=\operatorname{diag}\left\{1 \cdot 2,2 \cdot 3, \cdots, k^{2}-k, 1 \cdot 2,2 \cdot 3, \cdots,\right. \tag{36}\\
& \left.k^{2}-k, m^{2} s(m+1), \operatorname{msn}(m+1), m n\right\}
\end{align*}
$$

is an integral matrix. We have shown that for this D the matrix

$$
\begin{equation*}
C=E_{1}^{\prime} D^{-1} E_{0} \tag{37}
\end{equation*}
$$

is a rational orthogonal matrix, and $P C$ is a rational normal solution of the incidence equation. This completes our constructive proof.

The University of Chicago

[^0]: Received by the editors November 17, 1952.
 ${ }^{1}$ See R. H. Bruck and H. J. Ryser, The nonexistence of certain finite projective planes, Canadian Journal of Mathematics vol. 1 (1949) pp. 88-93.

