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Introduction. Let p be the natural projection of the topological

group G, with subgroup H, onto the coset space G/H. The subgroup

H is said to have a local cross section if there exists an open set U in

G/H, and a continuous function/defined on U with values in G such

that pf(x) = x for x in U. The most general conditions on G and H

under which such a function exists are not known. It has been con-

jectured [7, p. 33]2 that if G is compact and of finite dimension, then

H has a local cross section. (For the infinite-dimensional case, there

are examples of compact groups with closed subgroups not having a

local cross section.) In this paper, we show that if G is locally com-

pact, separable, metric, and of finite dimension, and H is a closed sub-

group of G, then H has a local cross section. In §1, several elementary

lemmas necessary for the proof are stated, along with certain prop-

erties of Lie groups and projective limits. In §2, we prove the main

theorem.

1. PreUminary definitions and theorems. We shall, in the follow-

ing, use, principally, the notation and terminology of [4]. Let {Gk}

be a sequence of groups indexed by the positive integers. Suppose

there exists, for each k, a continuous, open homomorphism irl+1 of G*+i

onto G*. Let G* = PkGk. Then the group G = [x= {xk}\irl+1(xk+i)=xk]

is called the projective limit of the sequence {Gk} and irk is the projection

of G on Gk. The following properties of projective limit groups may

be found in [4, pp. 54-56], [2, pp. 212-232], or else are easily verified.

Lemma 1. If H is a closed subgroup of G, where G is the projective

limit of Lie groups, and Hk is the natural projection irk(H) in Gk, then

H is the projective limit of [ Hk}, and G/H is the projective limit of

{Gk/Hk}.

G* has the usual Tychonoff topology. G is a closed subgroup of G*

under the induced topology. An open subset in G, then, contains an
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open set of the form GC\PkWk where

(Vk open in G*,    A = ku • • • , kn,
Wk = <

IG» otherwise.

Let (xi+1)-1 = 7r|+1, 7TÎ+1 • • ■Tr\XZ-i=*l+m, xî = identity map in G*.

Define
ft»

uk = n **(wm).

Then GnP*t/t = GnPjfclF*. Similar open sets are in G/77.

Theorem 1. Let G be the protective limit of the sequence {G*}, Ha

closed subgroup of G, 77*=7^(77), and f\+1 the induced mapping

Gk+i/Hk+i—>Gk/Hk. Then a sufficient condition for 77 to have a local cross

section is that for some open set U=iG/H)C\PkUk, as defined above,

there exist local cross sections /*: Uk—*Gk such that ir^V*+i "/«**•

Proof. Define /({x*}) = {/*(x*)}. One may easily verify that/

satisfies the conditions of a local cross section.

Lemma 2. Let Gi, G2 be two Lie groups (o/ the same dimension), it a

continuous, open homomorphism, with finite kernel, of G2 onto G\. If

Vi is an open n-cell neighborhood of the identity e in Gi, then there exists

a set V2* homeomorphic, under t, with Vi, and if t-1(c) = [si, • • • , sm],

F2 = x->(Fi) = U SiVl
i-l

Lemma 3. Under the hypothesis of Lemma 2, if H2 is a closed sub-

group of Gi, 77i=7r(77i), Ui=piiVi), Î/|=/>2(F|), where pi is the nat-

ural projection G¿-^G,/77<, then Ui is homeomorphic with U\.

Lemmas 2 and 3 are straightforward and easy in proof.

2. Principal results. In this section, all groups are assumed to be

separable, metric groups.

Theorem 2. If H is a closed subgroup of a O-dimensional compact

group G, then 77 has a cross section.

A cross section of 77 is a local cross section for which U=G/H. From

[7, pp. 31 and 36], we have the following consequence:

Corollary. Under the hypothesis of Theorem 2, G is H equivalent to

the product bundle HXG/H.

Proof of Theorem 2. G is the projective limit of the sequence
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{Gk} of finite groups. Gi=[s}, • • • , sij where we assume sj, i

= 1, • • • , mi, are distinct mod Hi, and are isomorphic to G1/H1. (See

Theorem 1 for the definition of Hk.) The set [5}, • • • , s^] is a cross

section /1 of Hi. G2= [s?, • • • , sjjj where we order the elements so

that irl(s2)=s] for *=1, • • • , nti, s\, ■ • • , si,, m2\\mi, are distinct

mod H2, and are isomorphic to Gz/H2. This is possible since ir\(H2)

=Hi. Then the set [s\, • • • , sij is a cross section /2 of H2 which

agrees (in the sense of Theorem 1) with/i. Continuing this process,

we obtain cross sections satisfying the hypothesis of Theorem 1.

Lemma 4. Let G be a locally compact group which is the projective limit

of the Lie groups {Gk}, where Gk = G/Nk, Nk a compact normal subgroup

of G. Then irl+i(e) is compact.

Henceforth, we shall mean projective limit in the sense of Lemma 4

when we say simply "projective limit."

Theorem 3. Let G be a locally compact group of finite dimension, H

a closed subgroup of G. Then H has a local cross section.

Proof. We may assume, because of the results of Gleason [3] and

Montgomery-Zippin [5], that G is the projective limit of Lie groups.

Also, these groups may be assumed to be of the same dimension (see

[6, p. 214]). Hence, 7rJ+1(e) is finite for every k by Lemma 4. We shall

construct local cross sections satisfying the hypothesis of Theorem 1.

Let us keep in mind the following diagram:

G

irit+l     yS t+i        N.    T*

A          Wk ^<

Gk+i     ->      Gk

Pk+1        I I Pk

Gk+i/Hk+i   -——>    Gk/H k

There exists an open set U{ in Gi/Hi containing Hi, on which a

local cross section is defined. (Hi is closed if H is, so the above state-

ment follows from [l, Proposition 1, p. 110].) Let Fi be an open

n-cell neighborhood of the identity which is contained in pi~1(U{).

Construct neighborhoods F* = UJ*isfFi, k>l, by Lemmas 2 and 3,

where [sj, • • • , s£J = Kk=ir\(e), the sf being ordered as below. Let

6k be the homeomorphism of Fi onto VI (see Lemma 2) induced by

7tÎ, and 0* be the homeomorphism, induced by 0k, of Ui onto Ul

= pk(Vi). We order the s? as follows: s? are distinct mod H2 for

i= 1, • • • , w2^w2, and are isomorphic to the set of left cosets of H2 in
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K2H2. Then»

rtiUx) = U SiU'2 = U #,(*>, ÍU'2)) = U M*^)-
t—1 »=1 i—i

Define f2 on U\ by

r-2(x) = Ô2/i*î(x).

Since s\U\ is disjoint from s)UÎ if tV/, », júm2, we may define/2 on

s?Z7|as

2 2

/2(i¿x) = $</2(x).

f2 is obviously continuous. That it satisfies the conditions of a local

cross section is immediate from p2 = d2piiti on U\, and

2 2 2
Piisifiix)) = Sipaifiix)) = s<x.

Also

22 222 2 22 22
iri/2(í¿x)  = Tiíi^Ti/aíx)  = Ti/¡¡(x)  = Tiff2/iTl(x)  = /l#!(í¿x).

We now order K$. Choose 5?, i = 1, • • -, w2, so that 7r| (s?) =5? and

if, * = 1, • • ■ , m3, «3^»î3èw2, are in different left cosets of 773, and

are isomorphic to the set of left cosets of 773 in K3H3. This we can do

since ^(TTs) =Ki. The sj may be chosen arbitrarily for í >wi3. Define

the local cross section /3 on U% by

/.(*) = 0,/iti(x),

and similar to/2 on s\Ul for *"= 1, • • • , m3. Then/a is a local cross sec-

tion on v\iUi)=rliU2), where
m*   2   .

U, = U î,î/2,
<-i

and

3 3 833 23 3

ir2fzisix) = T2isi)ir2ifiix)) = i<x2ö3/i(*i(x))
2 a 2     .,     3 2 3

= sfafiiniix)) = SifAviix) = i</2(*2(x))
3   2 3    2

= /2(i2*l(*))   = fiñiSiix)).

We order j£4 relative to ÜT3 in the same manner as we did Kt rela-

tive to K2, and make a similar definition of the local cross section

3 For s in G and x in G/H, we define sx"p(sp~l(x)) where p is the natural projec-

tion of G on G/ZT.
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ft. Continuing this process, we obtain the desired local cross sections,

and hence, by Theorem 1, H has a local cross section.

G has an open set W which is a direct product, W=ZA, where

Z=irî1(e) is the projective limit of the groups Kk, and A is a local

Lie group. (See [5, pp. 214-215].) The set U=ZV, where V is the

limit of VI, is an open set contained in W (or may be so chosen). The

set R = ST, where S is a cross section set of Z/Y, Y=HC\Z, and T is

the projective limit of fk(Ul), is a cross section set of U by our con-

struction. If H is closed, then B — Ai\H is a local Lie group such that

W(~\H— YB. One may note from our construction that T is a cross sec-

tion set for B in A. Hence, we have the following result.*

Corollary 1. Let G be a group satisfying the hypothesis of Theorem 2.

Let W=ZA, where Z is O-dimensional, compact subgroup of G, A a local

Lie group. If HC\W= YB is the corresponding decomposition of the

open set HC\ W, then G/H is locally the direct product of Z/ Y and A /B.

Corollary 2. Let G be a locally compact group which is separable,

metric, and of finite dimension, and H a closed subgroup of G. Then G

is a fibre bundle over G/H.

Proof. See [7, p. 31].
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