
EXTREME POINTS OF VECTOR FUNCTIONS

SAMUEL KARLIN

Several previous investigations have appeared in the literature

which discuss the nature of the set T in »-dimensional space spanned

by the vectors ifsdui, ■ ■ ■ , fsdp.n) where 5 ranges over all measur-

able sets. It was first shown by Liapounov that xi ui, • • ■ , un are

atomless measures, then the set F is convex and closed. Extensions of

this result were achieved by D. Blackwell [l] and Dvoretsky, Wald,

and Wolfowitz [2]. A study of the extreme points in certain function

spaces is made from which the theorems concerning the range of

finite vector measures are deduced as special cases. However, the

extreme point theorems developed here have independent interest.

In addition, some results dealing with infinite direct products of func-

tion spaces are presented. Many of these ideas have statistical in-

terpretation and applications in terms of replacing randomized tests

by nonrandomized tests.

1. Preliminaries. Let p. denote a finite measure defined on a Borel

field of sets $ given on an abstract set X. Let Liu, 5) denote the

space of all integrable functions with respect to u. Finally, let

Miß, %) be the space of all essentially bounded measurable functions

defined on X. It is well known that Af(/i, 5) constitutes the conjugate

space of Liu, %) and consequently the unit sphere of Af(/x, %) is bi-

compact in the weak * topology [3]. Let (®Ln) denote the direct

product of L taken with itself » times and take i®Mn) as the direct

product of M n times. With appropriate choice of norm, i®M")

becomes the conjugate space to (®7,n). Another description of

i®Mn) is that it consists of all «-vectors, each component of which

is an essentially bounded measurable function. In notation, let

xEi®Mn) be denoted by x=(x,(/)), i=l, ■ • -, », with x,- in M.

2. Extreme points in Ma. Let A be a bounded closed convex set in

Euclidean »-space. Let Ma consist of all x in ( <8> Mn) whose range of

values lie almost everywhere in A. I.e., for almost every t, x(i) = (x,(<))

is in A. Let B consist of the extreme points of A, and let B = closure

of B. For n^3, it is not necessarily true that B = B.

In view of the convexity of A, the set Ma is easily verified to be

convex, bounded, and weak * closed. We indicate the proof of this

last fact. Let x0 represent a weak * limit point of MA. Suppose

xoEMa- This implies the existence of a set of positive finite measure
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E with x0(E)(¡.A. Since a denumerable number of hyperplanes de-

termine A, it is easy to construct a plane {£<} so that Zt-i ¡tiVi>c

lor {r]i} Ç_A while 23"_i £¿t?(Ei) <c — e for a set of positive measure

EiQE. Let w(t) denote the function in ®Ln(p, %) defined as fol-

lows:

,,      /    ,.        íiMEi)    lor tin Eu \
w(t) = ( wat) = { > ).

We note that (w-x)= ^2?_i JwiXidp represents the inner product and

is èc for x in MA, while (wxa) <c — e. This shows that xQ cannot be a

weak * limit point of MA, a contradiction from which we conclude

that XoÇ:MA-

Since the unit sphere (® Mm) is bicompact in the weak * topology,

we deduce that Ma is bicompact. On account of the bicompactness

and convexity, the Krein-Milman theorem guarantees the existence

of extreme points in Ma. The first theorem characterizes such ex-

treme points. We define Mb in a similar manner to MA.

Theorem 1. The extreme points of Ma are contained in Ms-

Proof. Let xo = (Xf) be an extreme point of M A and let us suppose the

contrary that x0 is not in Mb. There exists an e0 such that xQ(£Ma(eô)

where B(e0) consists of the closure of the set of points of A obtained

from B by describing an e0 sphere about every point in B. In fact,

otherwise, let en—>0 and suppose *oG-^B(í„> for every n. That is,

except for a set En of p measure zero the range of values of x0 is in

Mb^„). Since p( Z^") =0, we deduce that *0 is in Mr\B<.t^ = Mb, which

serves as a contradiction. Thus there exists a set E of positive meas-

ure such that xo(t), lor t in E, is not in B(eo). It follows easily that a

constant vector ä exists of small magnitude such that xo + â is in A

when t is in E0(ZE. Put

(â,    l G Eo,
$(t) =  \

lo,   t(£Eo.

Consequently, Xo = (xo+<t>)/2-\-(x0 — $)/2 with x0 + #, x0 — $ in MA.

This impossibility establishes the result, Q.E.D.

Remark. The set Mb need not be contained in (MA)U) (extreme

points) but Mb is.

3. Extreme points of Ma with side conditions. A finite measure

p is said to be atomless if for any measurable set E of positive meas-

ure p there exists a measurable subset Eo such that 0<p(Eo) <p(E).

The theorem of Liapounov [4] states that if plt ■ ■ ■ , pn are atom-
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less finite measures defined on the same Borel field of sets, then the

span in Euclidean w space of the « tuples (/x(<)d/iy(i)) obtained by al-

lowing x(£) to range over all characteristic functions is convex and

closed. Therefore, it follows that the set of all » tuples ifxit)dp.jit))

with 0 =x(¿) ^ 1 spans the same set. An apparent weaker formulation

of the above spanning result which is, however, equivalent is that

for any given measurable set S there exists a set EES such that

simultaneously UiiE)=miS)/2 for i=\, ■ ■ • , ».

Let M [A, Uj] = [I,-, i= 1, • • • , »] with í,=/x(/)¿/tj(<) and x in Ma.

It is of course understood that x is measurable with respect to all

ßj. This set can also be viewed as points in Euclidean nm space.

Theorem 2. 7/ju, (t'=l, ■ • • , ») consist of atomless finite measures,

then the extreme points of the set T of all x(<) measurable /x,- (i = 1, • • •, w)

satisfying xEMa and bi^fxdßi^äi are contained in Mb.

Remark 1. The vector inequality fxdßi^äi means that the in-

equality holds for each component of the vectors.

Remark 2. The interest of Theorem 2 is that if we impose linear

side conditions on the set Ma of the form 5¿^/xá/i¿^a¿, then no new

extreme points are added to this convex subset of Ma when B

= B. Only the set of extreme points of M a may be diminished. This

result is in sharp contrast to the situation in the case of atomic meas-

ures. We leave it to the reader to construct examples involving

atomic measures which violate the conclusions of the theorem.

Remark 3. If ß=ßX-\- ■ ■ • +/i„, then by virtue of the Radon-

Nikodym theorem ßiiE) =fEfiit)dßit). The space Miß, %) considered

here is the set of all bounded measurable functions x(¿), which is the

conjugate space to 7,(/u, g) where % is the common Borel field of sets

over which all the p¡ are defined. Therefore, bounded weak * closed

sets in Miß, %) are bicompact and the same holds for (®M(ju, %)n).

The statement of the theorem in terms of the /< is that the set Y of

extreme points of all x(/) in MA which satisfy 5,¿/x/í(/)¿m(0 ^<*¿ is

contained in Mb when ß is atomless. Since A is convex and closed

and the linear restrictions are generated by elements of L iß, %), we

deduce that T is bicompact and convex and hence possesses extreme

points. The theorem thus determines the form of such extreme points.

Proof of Theorem 2. Let x0 be an extreme point of T and suppose

x0 is not in Mb. Then an argument as in Theorem 1 shows that for

some positive eo the point x0 is not in ikfs(eo). Consequently there exists

a set 5 of positive measure ß for which x0(¿) E-ß(«o) for t in 5. As in

Theorem 1, one can find a constant vector c and a measurable set

EES of positive ß measure such that x0±c, for t in E, is contained
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in A. An application of the theorem of Liapounov yields a measur-

able subset Eo of E with

Pi(Eo) =  I   fidp = — I   fidp = — pi(E)       for i = 1,
J B<¡ 2 J B 2

, n.

Put

fit)

c,   t in Eo,

■c,   t in E — Eo,   and   #(i) =

0   elsewhere,

— c,   t in £0,

c,   tinE— Eo,

0    elsewhere.

It is easy to verify that x0= (£o+<?)/2 + (x0+!r')/2 where *o+# and

¿0+$ are in Af¿. A simple computation gives that

/(*o + $)f>dp =  I  xofidp + c\   I    /¿¿/i -  I        /id/t
«J LVi:0 J E-E0 J

=   I   *o/¡¿M + C   —  I    /.¿M — — I    /¿¿Ai

=   I   *o/i¿M-

Similarly, f(xo-r-$)fidp = fxofidp. Therefore ío+í and *o+^ satisfy

the linear inequalities and hence lie in T. We have exhibited a con-

tradiction of the extreme point nature of x0 and the proof of the

theorem is hereby complete.

Although we employed the convexity part of the theorem of Lia-

pounov, we can now use Theorem 2 to obtain an extension of the

theorem of Liapounov. It is to be remarked, however, that the proof

of convexity in the Theorem of Liapounov is the simpler result to

obtain and is also used in [l] and [2].

Theorem 3. Let p¡ (j = l, ■■•,«) be atomless, finite measures. Then

M[A,pj] = M[B,pj].

Remark 4. An immediate conclusion of this theorem is that the

range in Enm of fx(t)dpj(t) where x(t) ranges over Mb is convex and

closed. This follows from the evident convexity and closedness of

M [A, p¡\ (see Remark 3).

Proof. Let x0 be any point in MA- Put \i=Jxodpi. Let T be the

set of all * in MA for which li — fxdp{. The set is weak * closed and

convex and hence bicompact (see Remark 3). There exists conse-

quently an extreme point xi of V. By virtue of Theorem 2, xi is in
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Mb and fxidßi=£i=fxodßi. Thus, we have shown that any point in

M[A, ßj] is in M[B, ßj\. On the other hand since BEA, evidently

we get M[B, ßj]EM[A, ßj]. Combining we have established our re-

sult.

Corollary 1 [1]. Let C represent any closed bounded set in En, then

M[C, ßi] is convex and closed if the ßj are atomless.

Proof. Let A be the convex span of C. Clearly A is closed and

SCC. Evidently, M[B, m]CM[C, in]CM[A, ßi}. However, Theo-
rem 3 implies the equality of the outside two sets which thus gives the

result (sea Remark 4).

As was pointed out in [l] and [2] the closure of M[C, ßi] can be

established under any circumstances regardless of the nature of the

measures ßi. In fact, any measure ß can be expressed as a sum of an

atomless measure ß* and a countable union of pure atomic measures

which we designate by ¡i. In notation, ß—ß*-\-ß. In the case of ß

one can show directly the closure [l ; 2]. The case of ß* was handled

in Theorem 3. Thus, to obtain the closure property for the general

case one needs only to apply this decomposition result to the meas-

ure ß=ßx+ßi+ ■ ■ ■ +ßn, and invoke the above remarks to the

parts of ß. Precisely: M[C, ß*+ß] = convex span (Jl7[c, ß*], M[c, ß]).

Closure properties of extreme points. This section investigates

whether the set of extreme points of Ma is weak * closed or weakly

closed. The measure ß is taken to be atomless and A is assumed to

contain more than one point.

Theorem 4. Let B = B, then the set of extreme points of MA is not

weak * closed and the extreme points Mb and Ma are sequentially weakly

closed.

Proof. We suppose that the set of extreme points of M a is weak *

closed. Let x denote any element of Ma and consider any integrable

fxit), • • • ./n(í)- Theorem 2 provides an extreme point x0 such that

Jfixdß=ffiXodß for i=x, • • ■ , ». Of course, xo depends on the

choice of fi, ■ ■ ■ ,/„. Put Gifa) = [x0\ x0 an extreme point of MA and

fxofadß=fxfadß]. The assumption implies that G(/„) is weak * closed

and nonempty. The above argument shows that every finite inter-

section of G(Jai) is weak * closed and nonempty. Since the extreme

points of Ma are weak * closed and hence bicompact, we have

L = ClGiJa) 5^0. Let xo be in L, then fxfdß=fx0fdp for every integrable
/ and hence x = x0 almost everywhere. Hence every x in Ma is a point

in Mb, which is clearly impossible since A consists of more than one

point. We now verify the second assertion of the theorem. If xn con-
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verges weakly to x, then at least xn converges almost everywhere to

x and ||x„|| <C. Thus if xn are in MB, then clearly x is in Mb as B is

closed. This completes the proof of the theorem.

Remark 5. The same result concerning the extreme points can be

carried over to sets studied in Theorem 2. Furthermore, in the case

that p is purely atomic and B = B, it is easily seen that the set of

extreme points MB of Ma is weak * closed. We omit the details.

This is in contrast with Theorem 4.

A further example more clearly illustrating the conclusion of

Theorem 4 is now given explicitly. On the basis of Theorem 1, it

follows that the extreme points of the set of all Lebesgue measurable

positive functions bounded by one consist of all characteristic func-

tions. In particular, s„(t) = l/2+r„(/)/2, where rn(t) =sign sin 2n+17r¿,

is an extreme point for each n, where rn(t) are the classical Rade-

macher functions. The orthogonality and boundedness of rn(t) imply

for any integrable function /(/) that limn..eo/u/(/)rn(¿)¿/ = 0. Conse-

quently sn(t) converges weak * to the function identically equal to 1/2

which is clearly not an extreme point.

Infinite vector functions. The space M™ = ( <g> M(p, %)°°) is defined

as the countable infinite direct product of M(p, %). An element of

M°° has the form x = (xi(t), x2(t), • ■ ■ ) where each xt(t) is in M(p, %).

Let (m) denote the Banach space consisting of all bounded sequences.

It is well known that (m) is the conjugate space of (/) (sequences

which converge absolutely). Therefore bounded weak * closed sets

in (m) are bicompact and convex bounded weak * closed sets are

spanned in the weak * topology by the extreme points. This is a

restatement of the Krein-Milman Theorem.

We discuss an example to indicate the extensions of the preceding

theory to the infinite case.

A. Let x = (xi(t)), i = l, 2, • • • , with 0£xt(ß)£l. Let MA denote

the set of all such points in MK. It can be shown in a manner similar

to the proof of Theorem 1 that the extreme points of Ma consist of

those elements x whose value for almost every t lie in the extreme

points of the set B in (m) which consists of sequences (mi) with

w, = 0 or 1. Also Ma is weak * closed. Furthermore, it follows that if

additional linear conditions jxdp¡ =a¡, j=í, • • • , m, are imposed

with pj atomless, then no new extreme points are added. This

yields as in Theorem 3 the convexity and weak * closure of the span

in (m) of (jxdpj).

More detailed results on the infinite vector functions will appear

in a later publication.
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Extreme points in measure spaces. It is of interest to compare the

type of results obtained above with the description of the set of ex-

treme points in other Banach spaces where constraints are present.

Specifically, we study the extreme points of the set of all positive

regular measures of total variation one defined on a bi-compact

Hausdorff space X subject to linear constraints.

Let Ai(x), • • ■ , A„(x) be continuous functions defined on X. We

look to characterize the set of extreme points of the set L of all posi-

tive measures = distributions ß with fdß=i, /A,(x)d/x = a,-. If we con-

sider the image M in Euclidean »-space of /¿—>{/A,(x)¿/i}, then it

follows easily that M consists of the set of all points, in the convex

span of the bi-compact image r of X given in parametric form by

i, = A<(x), t = l, • • • , », with x in X. Indeed, let C represent the

convex span of Y. As the convex span of the compact set Y, C is

closed. If I denotes a point in M but outside C, then there exists a

hyperplane which separates C and t. Therefore constants £»,• exist so

that E^»'«<— ^<0 ar,d E^<(*)^0 f°r each * m X- Since /<
= fhiix)dßix) for some/i, then 0> EW*"" J 2^,bihiix)dßix) ̂ 0, which
is impossible. This shows that C = M.

We now specialize the functions At(x) so that for any choice of «

points Xi, x2, • • • , x„ the rank of the matrix A<(x;) is ». Under this

condition we now show that points on the boundary of M come from

unique measures possessing only a finite number of points of increase.

To this end, let I be a point on the boundary of M whose components

are given by ti=fhiix)dßoix). There exists a supporting plane to M

at /. Hence, f2~^bihiix)dßoix) =0 for appropriate constants and, since

E¿>¿A,-(x) ̂ 0, we get for every point x of increase of ßo that E^'M*)

= 0. This implies in view of the property of A¿(x) that at most »

points of increase are possessed by ßo. Since E"-i XiAj(x,) =£/ where

hiixj) has rank « we obtain that the X,- are unique. This establishes

the assertion that boundary points of M correspond to unique

measures.

Finally, we investigate the form of the set of extreme points of L.

It is clear that the linear constraints /A¿(x)áju(x) =a,- define geo-

metrically a section K of the convex set M and that extreme points of

K must be boundary points of M. Thus any extreme point of K is

built up of a convex finite sum of pure atomic measures. Without

loss of generality, we can therefore restrict our considerations only to

measures ß which are finite convex combinations of pure atomic

measures. Let Ao(x) = l. We now suppose, in addition to the condi-

tions stated before, that the rank of the determinant A,(x;) for « + 1

distinct points x¡ is » + 1, i = 0,  !,-••,». Suppose now that ß
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= Za<lii with P> m L(ai ^0). Clearly any point of increase for a sin-

gle pi is shared by p. Let xi, ■ ■ • , xm denote the totality of points of

increase of p. Since fhi(x)dp(x) =a¿ for i= 1, • • • , n and Jh0(x)dp(x)

= 1,  we obtain that

m

(*) Z MX*<) = ai> i = o, l, • • •, w,
.-i

where a0=l. Since the rank of [A/*.-)] is min(« + l, m) it follows that

the dimensionality of solutions in X of the linear equations (*) will be

m — min (w + 1, m) = max (m — (n + 1), 0). Thus if m^«+l, then the

solution is unique and p is an extreme point. If m > w + 1, then since a

solution with X,>0 exists, it follows if Z?-i z,Aj(x,) = 0 that X, + ez,-

^0 and ZQ^i±€Zi)hj(Xi) =a¡ for e sufficiently small and hence X<

= (Xi+€z¿)/2 + (Xj —ez,)/2. This shows that the extreme points are

given by precisely those measures of L which are composed of not

more than w + 1 pure atomic measures. We have thus established:

Theorem 5. The extreme points of the set L of all positive regular

measures over a topological space X satisfying Jdp(x) = 1, fhi(x)dp = ai,

i=i, • • • , n, with hi(x) continuous, consist of those measures in L

with not more than w + 1 points of increase provided that the rank of

{hi(xj)} is w + 1 where i, j = 0, 1, • • • , n, ho(x) = l, and x¡ are distinct

points of X.
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