
CONCERNING CARTAN'S CRITERION

H. E. CAMPBELL

1. Introduction. Let S be a Lie algebra over a field % and let 8(0),

8', 8", • • • be the derived sequence of 8 where 8(0)=8 and 8(i+1)

■ g(Og(0. Let ¿(7?*) denote the trace of a right multiplication Rx of

an element x of 8. Without further mention we shall assume that

the base fields of all Lie and associative algebras considered have

characteristic zero.

Cartan's criterion for solvability states that if t(R\)=Q for all x

of 8(i) for some i = 0, then 8 is solvable. On the other hand if 8 is

solvable then t(R\) =0 for all x of 8(i) for t'= 1, but it is not true in

general for i = 0. However we shall show that if 8 is solvable it can

be imbedded in a solvable Lie algebra 21 over an algebraic extension

$ of r5 such that 21 has this property.

But we shall prove a much more general result, namely

Theorem 1. Let 8 = <2+$ft be the Levi-Whitehead decomposition of a

Lie algebra 8 over afield %, where 9Î is the radical and © is either zero or

semi-simple. Then there is a Lie algebra 2l = @£+9î over an algebraic

extension $ of $ whose radical 9Î contains 9Î and is the set of all x of 21

such that t(RxRy) =Q for all y of 21

The radical of a Lie algebra 8 is [2, p. 14] the set of all x of 8 such

that t(RxRv) =0 for all y of 8' but the radical is not always the set of

all x of 8 such that t(RxRy) =0 for every y of 8 as is the case for an

associative algebra. Theorem 1 is an analogue to the associative case.

It is also true that every associative algebra over r5 has a faithful rep-

resentation x—>QX by matrices whose elements are in g, such that

the radical is the set of all x such that t(QxQy) =0 for every y. The

corresponding statement for Lie algebras is not true, but we do ob-

tain the following theorem.

Theorem 2. Every Lie algebra 8 over a field g has a faithful repre-

sentation x—>Qx whose matrices have elements in an algebraic extension

$ of u% such that the radical 9Í of 8 is the set of all x of 2 such that

t(QxQy) = 0 for every y of 8.

2. Four lemmas. In order to prove these theorems we first prove

four lemmas. Throughout this section we let 8 be a Lie algebra with

radical 3Î over a field 5 and let x—>Sx be any representation of 8.
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Our first lemma, where x—*SX is the adjoint representation, can be

found in [2, p. 14].

Lemma 1. t(SxSv)=0for all xEW and all y£8'.

If 3} is a subalgebra of 8 we let 33 be the Lie algebra of linear trans-

formations consisting of the Sx for all x£33. Then 9Î is the radical of

8 and hence [3, p. 106] [g9c]c$R_where 9Î is the radical of the en-

veloping associative algebra 8* of 8. Consequently if x£9i and y = uv

for u, vE% then t(SxSv) =t(SxuSv) where Sxu= [SxSu]E?H and so

t(SxSv)=0.

Lemma 2. // t(SxSv) = 0 for all x, y of 9Î, then t(SxSv) = 0 for all x of
31 awd all y of 8.

Let 8 = ©+9? be the Levi-Whitehead decomposition of 8, where

<S is semi-simple or is zero. Then if yE8, y = u+v where »£© and

vE3l. Now by Lemma 1, if xE3l, t(SxSu)=0, since ©' = ©. Hence

t(SxSy) =t(SxSu) +t(SxSv) = 0.

Lemma 3. The set of equations

t

^ dprdqT = apq (p g q = 1, 2, • ■ • , t)
r=l

where aPqE% have a solution for the di¡ in an algebraic extension Ä of g.

Take dy = 0 for i <j and then the equations can be put in t sets

dudqi = aig,

diidgi + d22dq2 = a2q,

dqidqi + dq2dq2 + ■ ■ • + dqqdqq = aqq (q = 1, 2, • • • , t).

Evidently these can be solved successively to get a solution in an alge-

braic extension St of %.

Lemma 4. 8 has an equivalent representation x—*Qx whose matrices

have elements in an algebraic extension $ of %, such that t(QxQv)=Q

for all x of 31 and all y of 8.

Let eu e2, ■ ■ ■ , en be a basis for 8 where d, e2, ■ ■ • , ek is a basis

for 31 and et+i, • • ■ , ek is a basis for the set X of all x of 31 such that

t(SxSy) =0 for every y of 31. If x = Ylxiei let Dx= ^XiDi where Di

is the diagonal matrix diag [d,i, d«, ■ • • , dit]ii iút and D, = 0 other-

wise. If
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then Dxy = 0 for all x, y £8 and hence Q is a representation equivalent

to © in the sense that the correspondence SZ—*QX is an isomorphism

under addition and the commutator multiplication [5*5,,] = Sxy = SXSV

— SySx. By Lemma 3 we can take the da in an algebraic extension

$ of % such that t(QxQy) =0 for all *, y £91. Hence by Lemma 2 we

have t(QxQy) =0 for all x of 9? and all y of 8.

3. Proof of Theorem 1. The set of all x of 9? such that t(RxRv) =0

for every y of 9Í, where x^>Rx is the adjoint representation of 8, is an

ideal X of 9Î. Let «i, e2, ■ ■ ■ , ek be a basis for 9t and e*+i, • • • , en

be a basis for © with et+i, - • • , ek a basis for £. We construct a non-

associative algebra 21 over a field $ = r5(¿ü) by adjoining the addi-

tional basal elements wu w2, • • • , wt to 8 and defining

Wjd = - awj = dijWj (i, j = 1, 2, • • • , t),

the products of the w's with the other e's and with themselves being

defined to be zero.

It follows that 2Í is a Lie algebra, for by Lemma 1 and our construc-

tion,

(eie,)wk = 0 (i, j = 1, 2, • • • , ra; k = 1, 2, • • • , /),

while on the other hand

ei(ejWh) + (eiWk)ej =0        (i, j = 1, 2, ■ ■ ■ , n; k = 1, 2, ■ ■ ■ , t).

The ideal 9Î with basis e\, e2, ■ ■ ■ , ek, wi, w2, • • • , wt is the radical

of 21.
Now if x-+Rx is the adjoint representation of 21 we have

i

/(iCeiiCe,.)   =  t(Re,Rej) +   X dirdjr (Í, j =   1, 2,  ■  ■ ■  , l).
r-1

But by Lemma 3 we can take the ¿,y in an algebraic extension of % so

that t(ReiRej) =0 for (♦, j = l, 2, • • • , t) and then by Lemma 2 and

the form of the Rw's, with this choice of $, we have t(RxRy) =0 for all

x of 9Î and all y of 21.
The set of all x of 21 such that t(RxRv) = 0 for every y of 21 is an ideal

S3 of 21, and we have just shown that 9ÎÇZS8. But if x^>R¿ is the ad-

joint representation of S3 we have t(RxRy) =t(RxRy) =0 since 93 is

an ideal and hence by Cartan's criterion 93 is solvable. Thus $ft=93

and the proof is complete.
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4. Proof of Theorem 2. Harish-Chandra [l] and others have

proved that every Lie algebra over a field of characteristic zero has a

faithful representation. Consequently by Lemma 4, 8 has a faithful

representation x—*Qx whose matrices have elements in an algebraic

extension $ of g such that t(QxQv) =0 for all x of 31 and all y of 8.

We now apply another form of Cartan's criterion for solvability which

states that if t(Ai)=0 for all A in a Lie algebra 21 of linear trans-

formations, than 21 is solvable, and deduce that the ¡deal 93 of all x of

8 such that t(QxQy) =0 for every y of 8 is solvable. This proves the

theorem for we now have 93 = 3Ï as above.
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A SUBDIRECT-UNION REPRESENTATION FOR
COMPLETELY DISTRIBUTIVE COMPLETE

LATTICES

GEORGE N. RANEY

1. Introduction. In [l],1 Garrett Birkhoff makes the following re-

mark: "Tarski has shown that any complete, completely distributive

Boolean algebra is isomorphic with the field of subsets of a suitable

set. One can also show that any closed sublattice of a direct union

of complete chains is a complete, completely distributive lattice. The

question is (no. 69), are there any other complete, completely dis-

tributive lattices?" This paper will answer Birkhoff's question by

proving the following theorem:2

Theorem A. Every completely distributive complete lattice is iso-

Presented to the Society, October 25, 1952; received by the editors November 11,

1952.
1 Numbers in brackets refer to the references cited at the end of the paper.

2 Definitions and notations used here conform with those of [3], on which this

paper is based.


