CONCERNING CARTAN'S CRITERION

H. E. CAMPBELL

1. Introduction. Let \mathfrak{L} be a Lie algebra over a field \mathfrak{L} and let $\mathfrak{L}^{(0)}$, \mathfrak{L}' , \mathfrak{L}'' , \cdots be the *derived sequence* of \mathfrak{L} where $\mathfrak{L}^{(0)} = \mathfrak{L}$ and $\mathfrak{L}^{(i+1)} = \mathfrak{L}^{(i)}\mathfrak{L}^{(i)}$. Let $t(R_x)$ denote the trace of a right multiplication R_x of an element x of \mathfrak{L} . Without further mention we shall assume that the base fields of all Lie and associative algebras considered have characteristic zero.

Cartan's criterion for solvability states that if $t(R_x^2) = 0$ for all x of $\Re^{(i)}$ for some $i \ge 0$, then \Re is solvable. On the other hand if \Re is solvable then $t(R_x^2) = 0$ for all x of $\Re^{(i)}$ for $i \ge 1$, but it is not true in general for i = 0. However we shall show that if \Re is solvable it can be imbedded in a solvable Lie algebra \Re over an algebraic extension \Re of \Re such that \Re has this property.

But we shall prove a much more general result, namely

THEOREM 1. Let $\mathfrak{L} = \mathfrak{S} + \mathfrak{N}$ be the Levi-Whitehead decomposition of a Lie algebra \mathfrak{L} over a field \mathfrak{F} , where \mathfrak{N} is the radical and \mathfrak{S} is either zero or semi-simple. Then there is a Lie algebra $\mathfrak{A} = \mathfrak{S}_{\mathfrak{L}} + \mathfrak{R}$ over an algebraic extension \mathfrak{R} of \mathfrak{F} whose radical \mathfrak{R} contains \mathfrak{N} and is the set of all x of \mathfrak{A} such that $t(R_xR_y) = 0$ for all y of \mathfrak{A} .

The radical of a Lie algebra $\mathfrak X$ is [2, p. 14] the set of all x of $\mathfrak X$ such that $t(R_xR_y)=0$ for all y of $\mathfrak X'$ but the radical is not always the set of all x of $\mathfrak X$ such that $t(R_xR_y)=0$ for every y of $\mathfrak X$ as is the case for an associative algebra. Theorem 1 is an analogue to the associative case. It is also true that every associative algebra over $\mathfrak X$ has a faithful representation $x \to Q_x$ by matrices whose elements are in $\mathfrak X$, such that the radical is the set of all x such that $t(Q_xQ_y)=0$ for every y. The corresponding statement for Lie algebras is not true, but we do obtain the following theorem.

THEOREM 2. Every Lie algebra $\mathfrak L$ over a field $\mathfrak T$ has a faithful representation $x \to Q_x$ whose matrices have elements in an algebraic extension $\mathfrak R$ of $\mathfrak T$, such that the radical $\mathfrak R$ of $\mathfrak L$ is the set of all x of $\mathfrak L$ such that $t(Q_xQ_y)=0$ for every y of $\mathfrak L$.

2. Four lemmas. In order to prove these theorems we first prove four lemmas. Throughout this section we let \mathfrak{L} be a Lie algebra with radical \mathfrak{R} over a field \mathfrak{L} and let $x \to S_x$ be any representation of \mathfrak{L} .

Presented to the Society, September 3, 1952, under the title A converse of Cartan's criterion for solvability; received by the editors November 9, 1952.

Our first lemma, where $x \rightarrow S_x$ is the adjoint representation, can be found in [2, p. 14].

LEMMA 1. $t(S_xS_y) = 0$ for all $x \in \Re$ and all $y \in \Re'$.

If \mathfrak{B} is a subalgebra of \mathfrak{L} we let $\overline{\mathfrak{B}}$ be the Lie algebra of linear transformations consisting of the S_x for all $x \in \mathfrak{B}$. Then $\overline{\mathfrak{N}}$ is the radical of $\overline{\mathfrak{L}}$ and hence $[\mathfrak{Z}, \mathfrak{L}, \mathfrak{L},$

LEMMA 2. If $t(S_xS_y) = 0$ for all x, y of \Re , then $t(S_xS_y) = 0$ for all x of \Re and all y of \Re .

Let $\mathfrak{L} = \mathfrak{S} + \mathfrak{R}$ be the Levi-Whitehead decomposition of \mathfrak{L} , where \mathfrak{S} is semi-simple or is zero. Then if $y \in \mathfrak{L}$, y = u + v where $u \in \mathfrak{S}$ and $v \in \mathfrak{R}$. Now by Lemma 1, if $x \in \mathfrak{R}$, $t(S_x S_u) = 0$, since $\mathfrak{S}' = \mathfrak{S}$. Hence $t(S_x S_v) = t(S_x S_v) + t(S_x S_v) = 0$.

LEMMA 3. The set of equations

$$\sum_{r=1}^{t} d_{pr}d_{qr} = a_{pq} \qquad (p \leq q = 1, 2, \dots, t)$$

where $a_{pq} \in \mathcal{F}$ have a solution for the d_{ij} in an algebraic extension \mathcal{R} of \mathcal{F} .

Take $d_{ij} = 0$ for i < j and then the equations can be put in t sets

Evidently these can be solved successively to get a solution in an algebraic extension \Re of \Im .

LEMMA 4. \Re has an equivalent representation $x \to Q_x$ whose matrices have elements in an algebraic extension \Re of \Re , such that $t(Q_xQ_y) = 0$ for all x of \Re and all y of \Re .

Let e_1, e_2, \dots, e_n be a basis for $\mathfrak X$ where e_1, e_2, \dots, e_k is a basis for $\mathfrak X$ and e_{t+1}, \dots, e_k is a basis for the set $\mathfrak X$ of all x of $\mathfrak X$ such that $t(S_xS_y)=0$ for every y of $\mathfrak X$. If $x=\sum x_ie_i$ let $D_x=\sum x_iD_i$ where D_i is the diagonal matrix diag $[d_{i1}, d_{i2}, \dots, d_{it}]$ if $i \leq t$ and $D_i=0$ otherwise. If

$$Q_x = \begin{bmatrix} S_x & 0 \\ 0 & D_x \end{bmatrix},$$

then $D_{xy}=0$ for all $x, y \in \mathbb{R}$ and hence Q is a representation equivalent to \mathfrak{S} in the sense that the correspondence $S_x \to Q_x$ is an isomorphism under addition and the commutator multiplication $[S_x S_y] = S_{xy} = S_x S_y - S_y S_x$. By Lemma 3 we can take the d_{ij} in an algebraic extension \mathbb{R} of \mathbb{R} such that $t(Q_x Q_y) = 0$ for all $x, y \in \mathbb{R}$. Hence by Lemma 2 we have $t(Q_x Q_y) = 0$ for all x of \mathbb{R} and all y of \mathbb{R} .

3. Proof of Theorem 1. The set of all x of \mathfrak{N} such that $t(\overline{R}_x \overline{R}_y) = 0$ for every y of \mathfrak{N} , where $x \to \overline{R}_x$ is the adjoint representation of \mathfrak{L} , is an ideal \mathfrak{L} of \mathfrak{N} . Let e_1, e_2, \dots, e_k be a basis for \mathfrak{N} and e_{k+1}, \dots, e_n be a basis for \mathfrak{S} with e_{t+1}, \dots, e_k a basis for \mathfrak{L} . We construct a non-associative algebra \mathfrak{N} over a field $\mathfrak{R} = \mathfrak{F}(d_{ij})$ by adjoining the additional basal elements w_1, w_2, \dots, w_t to \mathfrak{L} and defining

$$w_j e_i = -e_i w_j = d_{ij} w_j$$
 $(i, j = 1, 2, \dots, t),$

the products of the w's with the other e's and with themselves being defined to be zero.

It follows that \mathfrak{A} is a Lie algebra, for by Lemma 1 and our construction,

$$(e_ie_j)w_k=0$$
 $(i, j=1, 2, \cdots, n; k=1, 2, \cdots, t),$

while on the other hand

$$e_i(e_jw_k) + (e_iw_k)e_j = 0$$
 $(i, j = 1, 2, \dots, n; k = 1, 2, \dots, t).$

The ideal \mathfrak{N} with basis $e_1, e_2, \dots, e_k, w_1, w_2, \dots, w_t$ is the radical of \mathfrak{A} .

Now if $x \rightarrow R_x$ is the adjoint representation of \mathfrak{A} we have

$$t(R_{e_i}R_{e_j}) = t(\overline{R}_{e_i}\overline{R}_{e_j}) + \sum_{r=1}^t d_{ir}d_{jr} \qquad (i, j = 1, 2, \dots, t).$$

But by Lemma 3 we can take the d_{ij} in an algebraic extension of \mathfrak{F} so that $t(R_{e_i}R_{e_j})=0$ for $(i, j=1, 2, \cdots, t)$ and then by Lemma 2 and the form of the R_w 's, with this choice of \mathfrak{R} , we have $t(R_xR_y)=0$ for all x of \mathfrak{R} and all y of \mathfrak{A} .

The set of all x of \mathfrak{A} such that $t(R_xR_y)=0$ for every y of \mathfrak{A} is an ideal \mathfrak{B} of \mathfrak{A} , and we have just shown that $\mathfrak{R}\subseteq\mathfrak{B}$. But if $x\to R'_x$ is the adjoint representation of \mathfrak{B} we have $t(R'_xR'_y)=t(R_xR_y)=0$ since \mathfrak{B} is an ideal and hence by Cartan's criterion \mathfrak{B} is solvable. Thus $\mathfrak{R}=\mathfrak{B}$ and the proof is complete.

4. Proof of Theorem 2. Harish-Chandra [1] and others have proved that every Lie algebra over a field of characteristic zero has a faithful representation. Consequently by Lemma 4, \Re has a faithful representation $x \to Q_x$ whose matrices have elements in an algebraic extension \Re of \Re such that $t(Q_xQ_y)=0$ for all x of \Re and all y of \Re . We now apply another form of Cartan's criterion for solvability which states that if $t(A^2)=0$ for all A in a Lie algebra \Re of linear transformations, than \Re is solvable, and deduce that the ideal \Re of all x of \Re such that $t(Q_xQ_y)=0$ for every y of \Re is solvable. This proves the theorem for we now have $\Re=\Re$ as above.

REFERENCES

- 1. Harish-Chandra, Faithful representations of Lie algebras, Ann. of Math. vol. 50 (1949) pp. 68-76.
- 2. ——, On the radical of a Lie algebra, Proceedings of the American Mathematical Society vol. 1 (1950) pp. 14-17.
- 3. N. Jacobson, Completely reducible Lie algebras of linear transformations, Proceedings of the American Mathematical Society vol. 2 (1951) pp. 105-113.

EMORY UNIVERSITY

A SUBDIRECT-UNION REPRESENTATION FOR COMPLETELY DISTRIBUTIVE COMPLETE LATTICES

GEORGE N. RANEY

1. Introduction. In [1], Garrett Birkhoff makes the following remark: "Tarski has shown that any complete, completely distributive Boolean algebra is isomorphic with the field of subsets of a suitable set. One can also show that any closed sublattice of a direct union of complete chains is a complete, completely distributive lattice. The question is (no. 69), are there any other complete, completely distributive lattices?" This paper will answer Birkhoff's question by proving the following theorem:

THEOREM A. Every completely distributive complete lattice is iso-

Presented to the Society, October 25, 1952; received by the editors November 11, 1052

¹ Numbers in brackets refer to the references cited at the end of the paper.

² Definitions and notations used here conform with those of [3], on which this paper is based.