CONCERNING CARTAN’S CRITERION

H. E. CAMPBELL

1. Introduction. Let € be a Lie algebra over a field § and let 2@,
¥, , - - - be the derived sequence of ® where Q©® =g and R+D
=R, Let t(R,) denote the trace of a right multiplication R, of
an element x of 8. Without further mention we shall assume that
the base fields of all Lie and associative algebras considered have
characteristic zero.

Cartan’s criterion for solvability states that if {(RZ) =0 for all x
of 8 for some 120, then { is solvable. On the other hand if  is
solvable then ¢(R2) =0 for all x of 2 for 4= 1, but it is not true in
general for 1=0. However we shall show that if € is solvable it can
be imbedded in a solvable Lie algebra % over an algebraic extension
& of § such that ¥ has this property.

But we shall prove a much more general result, namely

THEOREM 1. Let =&+ N be the Levi-Whitehead decomposition of a
Lie algebra R over a field §, where N is the radical and  is either zero or
semi-simple. Then there is a Lie algebra A =Sga+NR over an algebraic
extension & of § whose radical R contains N and is the set of all x of A
such that t(R.R,) =0 for all y of U.

The radical of a Lie algebra € is [2, p. 14] the set of all x of £ such
that ¢(R.R,) =0 for all y of & but the radical is not always the set of
all x of ® such that #{(R,R,) =0 for every y of € as is the case for an
associative algebra. Theorem 1 is an analogue to the associative case.
It is also true that every associative algebra over § has a faithful rep-
resentation x—Q, by matrices whose elements are in §, such that
the radical is the set of all x such that £(Q.Q,) =0 for every y. The
corresponding statement for Lie algebras is not true, but we do ob-
tain the following theorem.

THEOREM 2. Every Lie algebra R over a field § has a faithful repre-
sentation x—Q. whose matrices have elements in an algebraic extension
& of §, such that the radical N of R is the set of all x of  such that

$(Q-Q,) =0 for every y of L.

2. Four lemmas. In order to prove these theorems we first prove
four lemmas. Throughout this section we let & be a Lie algebra with
radical ¢ over a field § and let x—S; be any representation of L.
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Our first lemma, where x—.S; is the adjoint representation, can be
found in [2, p. 14].

LeEmMA 1. £(S.S,) =0 for all xEN and all yEL'.

If B is a subalgebra of € we let § be the Lie algebra of linear trans-
formations consisting of the .S, for all x€8. Then R is the radical of
€ and hence [3, p. 106] [EN]CR where R is the radical of the en-
veloping associative algebra 2* of €. Consequently if xER and y=uv
for u, vEQ then #(S.S,) =#(SzS,) where S.,=[S.S,]ER and so
£(S.S,) =0.

LeEmMA 2. If £(S.S,) =0 for all x, y of N, then t(S.S,) =0 for all x of
N and all y of .

Let 8=&+4MN be the Levi-Whitehead decomposition of &, where
& is semi-simple or is zero. Then if yER, y=u+v where €& and
vEN. Now by Lemma 1, if xER, #(S.S.) =0, since & =&. Hence
8(S2Sy) =4(S:S.) +14(S.S,) =0.

LEMMA 3. The set of equations

t

derdqr=apq p=q¢=12,---,1
r=1

where a,, T have a solution for the d;; in an algebraic extension K of §.

Take d;;=0 for ©+ <j and then the equations can be put in ¢ sets

dlldql = 014,
daidgy + daedye = Qg
dgdg1 + dgadge + - - - + dgedyq = ayq (g=1,2,---,0.

Evidently these can be solved successively to get a solution in an alge-
braic extension & of §.

LEMMA 4. § has an equivalent representation x—(Q, whose matrices
have elements in an algebraic extension & of §, such that t(Q.Q,) =0
for all x of M and all y of .

Let e, €3, - - -, e, be a basis for ® where e, €, - - -, €; is a basis
for M and ey, - - -, & is a basis for the set T of all x of N such that
£(S.S,) =0 for every y of M. If x= D xie; let D,= Y x;D; where D;
is the diagonal matrix diag [da, dis, - - -, die] if 1<t and D;=0 other-
wise. If
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Q- = [oz (;,]’

then D,, =0 for all x, y &R and hence Q is a representation equivalent
to & in the sense that the correspondence S,—Q; is an isomorphism
under addition and the commutator multiplication [S,Sy] =82y =325y
—S,S;. By Lemma 3 we can take the d;; in an algebraic extension
® of § such that ¢(Q,Q,) =0 for all x, yEN. Hence by Lemma 2 we
have £(Q.Q,) =0 for all x of N and all y of L.

3. Proof of Theorem 1. The set of all x of % such that # R.R,) =0
for every y of N, where x— R, is the adjoint representation of &, is an

ideal T of M. Let ey, €z, - - -, e; be a basis for N and €44, - - -, €,
be a basis for & with e, - - -, € a basis for . We construct a non-
associative algebra ¥ over a field & =§(d;;) by adjoining the addi-
tional basal elements wy, w., - - -, w, to £ and defining

Wie; = — e;W; = d,-,-w,- ('l,] =12 -, t),

the products of the w's with the other ¢’s and with themselves being
defined to be zero.

It follows that ¥ is a Lie algebra, for by Lemma 1 and our construc-
tion,

(eie;)wr = 0 GGji=12---,nk=12---,0,
while on the other hand
ei(e;wi) + (e;wr)e; = 0 (Gj=1,2,---,n;k=1,2---,1).
Tfhe ideal N with basis e, e, - - -, e, wy, Wwe, - - -, w, is the radical
of A.

Now if x—R; is the adjoint representation of % we have
t
t(R.R,) = (R.R.) + 2 dude (5,5=1,2,--,0).
ra=l

But by Lemma 3 we can take the d;; in an algebraic extension of § so
that ¢(R,,R,;) =0 for (4, j=1, 2, - - -, ¢) and then by Lemma 2 and
the form of the R,'s, with this choice of &, we have ¢{(R.R,) =0 for all
x of R and all y of U.

The set of all x of A such that ¢(R,R,) =0 for every y of ¥ is an ideal
B of ¥, and we have just shown that RCSB. But if x—R/ is the ad-
joint representation of B we have (R R,)) =t(R.R,) =0 since B is
an ideal and hence by Cartan's criterion B is solvable. Thus =3
and the proof is complete.
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4. Proof of Theorem 2. Harish-Chandra [1] and others have
proved that every Lie algebra over a field of characteristic zero has a
faithful representation. Consequently by Lemma 4, £ has a faithful
representation x—(Q, whose matrices have elements in an algebraic
extension & of § such that £(Q.Q,) =0 for all x of M and all y of &
We now apply another form of Cartan’s criterion for solvability which
states that if £(42) =0 for all 4 in a Lie algebra % of linear trans-
formations, than ¥ is solvable, and deduce that the ideal B of all x of
€ such that #(Q.Q,) =0 for every y of € is solvable. This proves the
theorem for we now have 8=% as above.
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A SUBDIRECT-UNION REPRESENTATION FOR
COMPLETELY DISTRIBUTIVE COMPLETE
LATTICES

GEORGE N. RANEY

1. Introduction. In [1],! Garrett Birkhoff makes the following re-
mark: “Tarski has shown that any complete, completely distributive
Boolean algebra is isomorphic with the field of subsets of a suitable
set. One can also show that any closed sublattice of a direct union
of complete chains is a complete, completely distributive lattice. The
question is (no. 69), are there any other complete, completely dis-
tributive lattices?” This paper will answer Birkhoff’s question by
proving the following theorem:?

THEOREM A. Every completely distributive complete lattice 1is 1so-
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1 Numbers in brackets refer to the references cited at the end of the paper.

* Definitions and notations used here conform with those of [3], on which this
paper is based.




