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AN EXPRESSION FOR #,(nz)/%1(2)
W. N. BAILEY
1. Introduction. In a recent paper [1] I used the formula
IT [+ ¢v/2)(1 + ¢ 51 — ¢ Y/z)(1 — g9 (1 — ¢7)]
(1.1) = [T [(1 = ¢=23)(1 — ¢* /)1 = ¢*)]

+ ]I [(1 = ¢339 — g1 ~ ¢)],
where, in the products, # takes all values from 1 to «, to simplify
certain identities of the Rogers-Ramanujan type. It has been shown
by Sears [2] (and independently by Miss Slater) that (1.1) can be
derived from the relation connecting three products of four sigma
functions, or alternatively from the corresponding relation connect-
ing theta functions. Now (1.1) can be written in the form

(A =g~ - ¢v/7%)
I = :
(1 =g~ '2)(1 — ¢q"/2)

1.2 1— g
(1.2) =11 (_Lz X [IT (1 = >z (1 — g*»2%)
(1—4¢7)

+2I1 (1 = ¢/t — gsh)]
and if we write

S p) = [T (1 = p~8)(1 — p7/2)

this formula can be written as
S(z% q) (1—4¢*
(1.3) —_ = H P pE—
S(z: ) 1-4¢v
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But it is well known that [3; 2, 4]
(1.4) a(x) =A exp (Bx?— Cx)S(e*°=; ¢%),

where 4, B, C are constants depending on w;, ws, and so (1.3) gives an
expression for ¢(22)/0(2) as a sum. Alternatively we have, with the
notation of Tannery and Molk,

(1.5) 8(s) = igtese TT (1 — g)S(eties; ),

and so (1.3) can be written in the form

(1.6 () 1 [e=‘f=o,(3z + 7| 37) ]
$1(z)  Si(r|37) — e %r9,(35 — 7| 37)

It is well known [3, 2, 148] that &,(n3) /31(3) can be expressed as a
single product of (n?—1) theta functions, but I have not been able
to find any reference in the literature to an expression for #,(n3) /% (s)
as a sum of n products, each product containing only (z—1) theta
functions.! The aim of this paper is to give such an expression.

2. Notation. With the above definition of S(x; p), we write S(x)
for S(x; p) when there is no ambiguity, and

S[xl’ Xay *t x':;.]
Yy Yooty Y
S(x1)S(x2) -+ - - S(xn)

S(y1)S(y2) - - - S(ym)

3. A theorem on products. By considering the residues of the ellip-
tic function

for

o(u — b)o(u — bs) - - - o(u — by)

o(u — a))o(u — az) - - - o(u — a,) ’
where a1+as+ - -+ +an=bi+bs+ - - - +b,, it is seen that [3, 3, 46]
3.1) i o(a, — by)a(a, — by) - - - o(a, — ba) ~0,

=1 o(e, — a)o(a, — a) - - - *o(a, — a,)

the star denoting that the vanishing factor o(a,—a,) has to be
omitted. Using (1.4) and writing p for ¢2, we see that (3.1) can be
written in the form

1 Tannery and Molk give an expression for 0l(nz] nr) /01(z| 7) as a single product
of (n—1) theta functions, but here we are considering nh(nzl T) /o,(zl 7).
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provided that 4,4, - - - A,=B,B; - - - B,.
4. The expression for &,(nz) /5:(z). In (3.2) take
By = B)/p''*, By = B,/p¥", ..., B, = B,/p(n—Din,
4, = B3, Az = Byg/pln, - -+, Auy = Byg/pn—In,
so that 4,=B,/z"1p(»—Di» We then get
,il S[z/p(r—l)/n, z/p(r—”ln, e, zp(n—r)ln; ]

l/p(r—l)/n’ 1/p(r—2)/n, e *' p(n—r—-l)/n' zap(n—-r)lu

=1

1/g71pn=Din 1 [an—lp(n=2in ... /g1
N S[ /5= /51 / ] o
1/znp(n—Din 1/zrp=Din ... 1/znplin

But S(1/x) = —(1/x)S(x), S(x/p) = — (x/$)S(x), and so, changing 7
into (n—r), we find that

E wrig 2, zpl/n’ zp2/n’ s, zp(n—l)ln;
z n

Py Plln, P2In, ... *, p(u—l)/»' Z"P'/
_s zn—l, zn—lpllu' cee, zn—l?(n—l)/n;
z"p”", znp!/n' cee, Z"P("_l)/" ’

where the star on the left-hand side denotes that p™/» is omitted. We
now take p=g¢" and use the fact that
S(z; 9) =S(z; ¢")S(2q; ¢*) - - - S(zg™; q),
and we obtain
S(zn—l; q) Z"q, znqz’ s, znqn—l;
S@9 S ' RRR q,.]
(4. 1) n—1 , ’qr.
X Z zn—r—ls[ ' qu]
znqr
Using (1.5), this gives

01{(71 - l)z} _ ’ﬁ H(nz + srl nr)

1’1 { (Z) } - a1 01(8? ' n-r)

o S I nr)

X 2

1 %i(nz + r1'| nr)

(4.2)

(n’—n—2r)itz.
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If we change # into (n+1), we see that we have expressed
%1(n3) /01(2) as the sum of n products, each product containing (z—1)
theta functions. The case #=3 in (4.2) is equivalent to (1.6).

From (4.2) we can derive corresponding formulae for d2(n2)/#2(3),
¥3(nz) /93(2), and #4(nz)/34(2) when # is an odd integer by changing
z into 2+1/2, 2+7/2, 2+1/241/2. We can also obtain formulae for
31(n2) /92(2), 31(n3) /d3(2), and &:1(n2) /#4(2) when = is even by changing
2 in the same way.
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