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4. Proof of Theorem 2. Harish-Chandra [l] and others have

proved that every Lie algebra over a field of characteristic zero has a

faithful representation. Consequently by Lemma 4, 8 has a faithful

representation x—*Qx whose matrices have elements in an algebraic

extension $ of g such that t(QxQv) =0 for all x of 31 and all y of 8.

We now apply another form of Cartan's criterion for solvability which

states that if t(Ai)=0 for all A in a Lie algebra 21 of linear trans-

formations, than 21 is solvable, and deduce that the ¡deal 93 of all x of

8 such that t(QxQy) =0 for every y of 8 is solvable. This proves the

theorem for we now have 93 = 3Ï as above.
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A SUBDIRECT-UNION REPRESENTATION FOR
COMPLETELY DISTRIBUTIVE COMPLETE

LATTICES

GEORGE N. RANEY

1. Introduction. In [l],1 Garrett Birkhoff makes the following re-

mark: "Tarski has shown that any complete, completely distributive

Boolean algebra is isomorphic with the field of subsets of a suitable

set. One can also show that any closed sublattice of a direct union

of complete chains is a complete, completely distributive lattice. The

question is (no. 69), are there any other complete, completely dis-

tributive lattices?" This paper will answer Birkhoff's question by

proving the following theorem:2

Theorem A. Every completely distributive complete lattice is iso-

Presented to the Society, October 25, 1952; received by the editors November 11,

1952.
1 Numbers in brackets refer to the references cited at the end of the paper.

2 Definitions and notations used here conform with those of [3], on which this

paper is based.
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morphic with a closed sublattice of the direct union of a family of com-

plete chains.

2. A characterization of complete distributivity.

Definition 1. If L is a partially ordered set and if M is a subset

of L such that if x E M and y á x, then y EM, then M is called a semi-

ideal of L. Let R(L) denote the complete lattice of semi-ideals of L.

Definition 2. If L is a complete lattice and xEL, then let K(x)

= Il {M\ MER(L) and x g UM}.

Lemma Í. If Lis a complete lattice, then

(A) ifxEL, then \JK(x)^x;
(B) ifxEL, yEL, andx^y, then K(x)EK(y);
(C) ifAEL,then £,{K(a)\aEA } =K(\JA).

Proof. If xEL, then {t\t^x}ER(L) and U{/|/^x} =x, so that

K(x)E{l\tûx}. Therefore \JK(x)^x. If xEL, yEL, andx^y, then

{M\MER(L) and ygUM} C{^| MER(L) and xgUM}; hence
K(x) EK(y). If A EL and IE E {K(a) \ aEA }, then for every aEA,
tEX(a) and one can choose an MaER(L) such that tEMa and a

^UMa. Then tET,{Ma\aEA}. Moreover, K(UA)Ejl{Ma\a
EA}, since X) {M«\ a EA } ER(L) and \}A ̂ \J{[)Ma\aEA }
= U¿{Ma aEA}. Hence t$K(UA). On the other hand, if t

E ^,{K(a) aEA }, then tEK(a) for some aEA, and since a 5=114,

/e.R:(lL4). Therefore J2{K(a)\aEA } =K(VA).

Lemma 2. In order that a complete lattice L be completely distributive

it is necessary and sufficient that if {My\yEC} is a family of semi-

ideals of L, then Ç]{UMy\yEC} úUJI{My\yEC}.

This follows from Theorem 1 and Lemma 5 of [3].

Theorem 1. In order that a complete lattice L be completely distribu-

tive it is necessary and sufficient that for every xEL, UK(x) =x.

Proof. To prove necessity, let the complete lattice L be com-

pletely distributive. If xEL, then x^n {UAf | MER(L) and x^ \JM}

^\JJl{M\MER(L) and x^üM} =[)K(x). This, together with
Lemma 1(A), implies that UK(x) = x for every xEL.

To prove sufficiency, let L be a complete lattice such that for every

xEL, \JK(x)=x. If {Âf7|Y£C} is a family of semi-ideals of L and

if tEK(f\{UMy\yEC}), then for every yEC, tEK(0My), by
Lemma 1(B), and tE ^{K(x)\xEMy}, by Lemma 1(C). For every

yEC one can choose an xyEMy such that tEK(xy) and then /

^UK(xy)=xy. Hence t^f) {xy\yEC} and, since HÎ^It^C}

EÏÏ{My\yEC},tElT{My\yEC}. Therefore K(f){üMy\yEC})
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CH{My\yGC}. It follows that f\{[)My\yeC} =UK(Ç){\jMy\y
£C}) ^U IJ{ Af7|y£C}, and, by Lemma 2, L is completely dis-
tributive.

Definition 3. If L is a complete lattice, let p be the binary rela-

tion on L defined as follows: xpy if and only if x£7,, y£7,,

and x£X'(y).

Definition 4. If a is a binary relation on a set X, let o o <r be the

binary relation on X defined as follows: xa o cry if and only if there

exists a 2 such that x<rz and z<ry.

Corollary. If L is a completely distributive complete lattice, then

p=p op.

Proof. For every x£7,, K(x)=K(VK(x))= Y,{K(a)\aEK(x)\,
by Theorem 1 and Lemma 1(C). It then follows that p=p op.

The nonmodular lattice of five elements is a complete lattice in

which p=p o p and which is not completely distributive. Hence the

converse of the corollary is not true.

3. Relations o=<r o a. Let X be a set and let a be a binary relation

on X such that er = <r o o.

Definition 5. If AQX, let <f>(A) be the set of xG.X such that

there exists a y£.4 such that x<ry. Let L(o) be the family

{(p(A) | A C.X}, partially ordered by set-inclusion.

Theorem 2. If o is a binary relation on a set X and if a = o~ o cr, then

L(o) is a completely distributive complete lattice. If, in addition, a is

reflexive, then L(o) is a complete ring of sets.

Proof. If {^4T|y£C} is a family of subsets of X, and if

*£0( S{-^t|t£Í'})> then there is a y£C and a y(E.Ay such that
xtry. Then x£c/>(.4T); hence x£ ^2{<f>(Ay)\y(E.C}. This proves that

<KZMyeC})CZ{<t>(Ay)\yeC}. For every 7£C, <p(Ay)
C0(ZUTl7£C}).ThereforeE {<p(Ay)\y£C} = c6(ZM,|t£C})
and L(o~) is closed with respect to union. Hence L(o) is a com-

plete lattice, in which joins are unions; that is, U{c/>(^4T)|7£C}

= Z{<t>(Ay)\yeC}.
If A C.X and x£<£(.4), then there is a yG.A such that xoy. Since

0 = 0-00, there is a / such that xot and ¿cry. Hence if x£0(^4), then

there is a /£cpG4) such that x£0( {t ] ). Therefore <p(A)C Z {</»({*} ) I *

£<p(A)}.
If tÇi<p(A) and M is a semi-ideal in 7,(cr) such that <p(A)£_ ̂ M,

then there exists a BQX such that <j>(B)Ç£M and tÇ.<p(B). Then

</>({*})C<£(7i); hence </>({<})£if. Therefore, if tE<j>(A), then 0({<})

£X(t/.(^)).  It follows that <j>(A)C'EK(<t>(A)) = \jK(<l>(A)). This,
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together with Lemma 1(A), implies that <f>(A) = (jK(<p(A)) for every

A EX. This proves that L(a) is completely distributive.

If, in addition, a is reflexive, then for every A EX, AE<i>(A). Hence

if {^LJyGC} is a family of subsets of X, then Ü{0(^47)|7GC}
E<p(ÍÍ{<p(Ay)\yEC}). On the other hand, for every yEC,
<p(U{<KAy)\yEC})E<p(<p(Ay))=<t>(Ay). Therefore, T\{d>(Ay)\y
EC} = <t>(W{<l>(Ay)\yEC}), and L(a) is closed with respect to inter-

section as well as union. In other words, L(a) is a complete ring of

sets.

If a = (T o <r and <r is reflexive, then a is a quasi-ordering. Theorem 2

shows that the relation between completely distributive complete

lattices and relations a = a o a is a generalization of the relation be-

tween complete rings of sets and quasi-orderings. The latter relation

has been studied by G. Birkhoff in [2].

4. Proof of Theorem A.

Definition 6. If a is a binary relation on a set X, and if C is a sub-

set of X such that if xEC and yEC, then either x=y or xay or yax,

then C is called a chain in a. If C is a chain in a which is not properly

contained in any chain in a, then C is called a maximal chain in a.

It follows from Zorn's Lemma that every chain in <r is contained in

a maximal chain in <r.

Let L be a completely distributive complete lattice and let T be

the family of maximal chains in p. If CET and aEL, let f(C, a) be the

set of tEC such that there exists an xEC such that tpxpa. If CET,

let Fc={f(C, a)\aEL}.
For every xEL, 2{/(C, x)| CET} =K(x). For if *££(*), then

{t, x} is a chain in p, so that there is a CET such that {t, x} EC. Since

C is maximal and p=p o p, there is a y£C such that tpypx. Then

¿e/(C x). Therefore K(x)E E{/(C, x)| C£r}. On the other hand,
if ¿G/(C, *) for some CET, then tEK(x). Therefore £ {/(C, x)|C

er}cir(*).
If aEL and &££, then either/(C, a)CRC, b) or f(C, b)Ef(C, a).

For if /(C, a) is not contained in f(C, b), then there is a tEf(C, a)

such that tEf(C, b). If yEf(C, b), then neither i=y nor ipy; other-

wise ¿G/(C, 6). Hence yp/ andyEf(C, a). Then/(C, b)Ef(C, a). There-
fore, for every CET, Fc is a chain in the relation of set-inclusion on

the set of subsets of C.

If CET and AEL, then £{/(C, a)|aG¿} =/(C, IU). For t
Ef(C, DA) if and only if ¿£Cand there isanxGCsuch thattpxp\JA.

By Lemma 1(C), tpxp\JA if and only if there exists an aEA such that

tpxpa. Hence tEf(C, VA) if and only if there exists an aEA such

that tEf(C, a). Therefore Fc is closed with respect to union, for every
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C£r. It follows that for every C£I\ Fc is a complete chain in which,

if FCFc, UF= I>and f)F=Z{f(C, b) \ b EL and f(C, i)Cll>}-
If C£r and AQL, then (\{f(C, a)\aEA} =f(C, f[A). For if /

£n{/(C, a)|o£^4}, then there exists a ¿>£L such that i£/(C, b)

and f(C, &) C II {/( C, o) | a £^4 }. Then t £ C and there exists an s £ C
such that tpspb. Since p=p o p and since C is a maximal chain in p,

there exists m£C and y EC such that tpupypspb. Then yÇif(C, b),

and for every aÇ.A, y€zf(C, a). Hence y^a for every a£.4 ; so that

yïkftA. By Lemma 1(B), tpupÇ[A, and tEf(C, f]A). Therefore

n{/(C, a)\aeA}Cf(C, r\A). On the other hand, f(C, f\A)
ClI{/(C, a)\aEA}, by Lemma 1(B). Therefore, f(C, ()A)

Cn{f(C,a)\aeA}.
Let D be the direct union of the family of complete chains

{Fc|C£r}. D consists of all functions 0: r-»£{£c|C£r} such

that for every C£r, B(C)ÇzFc. Furthermore D is a complete lattice

in which, if ACT), then (UA)(C) = U{0(C)|0£7)i} and (flAXC)
= n{0(C)|0£7)i}, for every C£r.

For every a(£L, let 0O be the member of D such that for every

C£r, 6a(C)=f(C, a). Let L*= {0a|a£7,}. The mapping a->0a is a

one-to-one mapping of L onto L*. For if 0a=0&, then for every

C£r, f(C, a)=f(C, b). Then a = l)K(a) = U ¿{/(C, a)|C£r}
= UE{/(C, b)\Cev} =UK(b)=b.

If ¿C7,, then U{0o|a£^} =0uA. For, if C£r, then (U{0„|a

eA})(C) = \J{Ba(C)\aEA} =U{f(C,a)\aeA} = Z{f(C,a)\aGA}
=f(C, [)A)=0UA(C). Also if ACL, then (] {0ala£^ } =9nA. For, if

C£r, then (n{0o|a£^})(C)=n{0a(C)|a£^}=n{/(C, a)\aGA}
—f(C, f\A) = 0n¿(C). It follows that L* is a closed sublattice of D,

and that the mapping a—»0„ is a complete-isomorphism of L onto L*.
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