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Introduction. Let ft be the family of functions f(z) such that for

\z\ <p withp>0

(1) /(z)=Z/nZn (With/l^0).
n-1

Raising (1) to the wth power (m integer, — «> <ra< + <») we can

always find coefficients/m,„ such that for \z\ <p', p'>0,

(2) [/(«)]"  =  "Zfm.nZ".

We note that because/(z) G ft, we have/m,„ = 0 for n<m.

The matrix/=||/m,„|| is a transform of the function/(z) and can

be used to represent this function. One row of the matrix is sufficient

to define the function so that the whole matrix furnishes a super-

abundance of information about the function. This results, however,

in the existence of relations among the elements/m,„ which are inde-

pendent of the particular function f(z). These relations are funda-

mental properties of all matrices / which represent functions G ft and

they are powerful analytical tools that can be applied to many prob-

lems of analysis.

We shall prove two such fundamental theorems about the matrices

/=||/m,n|| and then, as an application, use these theorems to derive

properties of Faber polynomials which play an important role in the

theory of univalent functions.

Historical. Integral transforms in two variables, generalizing the

matrix transforms which are considered here, were defined, and

some of their properties were given by the author in the summary of

a paper submitted by the author to the 1950 Congress of Mathe-

maticians at Harvard.

I. Schur [5]1 considered in connection with functions f(z) the

matrices/+ = ||/m,„|| defined for m, ra^l. His failure to consider the

full matrix/=||/m,„|| defined for — » <m, ra< + » prevented his dis-
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1 Numbers in brackets refer to the bibliography at the end of the paper.
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covery of our Theorem II. The matrices /+ were also used by M.

Schiffer [4] and by the author [2].

Theorem II was first proved by the author [3] by contour integra-

tion. An algebraic proof based on the fact that fm,n is a polynomial

in m of degree (n — m) was indicated. The possibility of the present

proof was suggested by M. Schiffer who also found a proof based on

the study of the expression log [(f(z)—f(w))/(z — w)] (see our proof

of Theorem VIII). Thus, in all, four proofs of Theorem II are avail-

able. The first proof by contour integration has the advantage of

being adaptable to functions not in ß and to general integral trans-

forms of the type (1).

Grunsky's theorem (our Theorem VII) was first proven by Grun-

sky by contour integration [l]. Grunsky's theorem results from our

Theorem II but is weaker than this theorem.

The polynomials F*(t) = (l/m)F„(t) were used by M. Schiffer in

preference to the Faber polynomials Fm(t) in connection with the

coefficient problem of uniform functions [4]. Equation (13) of our

Theorem V shows that these polynomials are in a sense covariant

with the fm.n when /(z) is replaced by /{g(z)J. This explains the

preference.

Two fundamental theorems. Using the notation introduced in (2),

we have the following general properties of the matrices/=||/m,„|| :

Theorem I. Consider two functions /(z)£ß and g(z)E& and the

function k(z) =/{ g(z)} which is also E ß- Letf, g and k be matrices rep-

resenting these functions. Then k=fXg. That is,

p==H-oo

\0) ftm.n  =      s  .  Jm.pgp.n.

Theorem II. If f(z) E ß and <p(z) is the inverse function of f(z), then

<p(z)E$l. Let f and <f> be the matrices representing f(z) and <p(z). Then

the elements <pm,n of <f> are given by

m
(4) <*>„,„ = —f-n.-m (for n^O)

n

and, for » = 0, by

(5) "eY.oz--1 = f'(z)/f(z).

Proof of Theorem I. We identify the coefficients of z" in the

second and last terms of the following equation:
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n—+w p=-f-«>

[*(«)]-= £ *m.»2n= [/{««}]- = E/m.pto]p
n—oo p=—«

p™+« p   n™-f«o

P=a—oo I—   n=—oo -J

7i=+œ p p=+°o

=    Z E  U.pgp.n    Z".
ffe«—flO   L «=—00 -I

The change in the order of summation is in our case always legitimate

because the sum £*,"!" fm,Pgp,n contains only a finite number of

significant terms (those for which wáp = ra).

Proof of Theorem II. We use the fact that f{<p(z)]=z and

Theorem I. Noting that the matrix / representing the function z is

the unit matrix 7=||om,„||, we have

p—+00

(6) ¿j   fm,p<t>p,n   =   5m,„.

The matrix / is not singular and has only one inverse <p. All we

have to do is to show that the values of <f>m,n drawn from (4) and (5)

satisfy identically (6). We show first that (4) and (5) are together

equivalent to

(7) Z   4>m.nZ— »  =   [f(z)]—lf'(z).

Indeed, for ra = 0 this is clear. For ra^O we have

id 1   p=+0°

L/C*)]—1 ■/'(«)   =   - -  - [/(«)]" =   - -    E   Pf-n,pZ>-\
ra   dz ra   p_oo

which for p= — m shows that, for raj^O, (7) and (4) are equivalent.

Consider now the product

[f(z)Y-[f(z)]-^-f(z) = r 15%.^] I xT*,.«*-^].
L   p=~ ao —I L   p=—oo -J

The coefficient of z-1 on the right is Ep--» fm.ptpp.n', on the left we

have:

[/(*)]-• [/(*)]-^/(*) = [/(«)]"*•/(»).

If m = n, the coefficient of z_1 is 1. If rajara, then the last expression is

equal to (1/(m — n))d[f(z)]m-n/dz and the coefficient of z~x is 0. Thus

(6) is always satisfied.
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Faber polynomials. Let/(z)£ß- We define for mW 1 the mth Faber

polynomial of f(z) as the polynomial Fm(t) — Z?~? Pm.pt" of degree

m for which

(8) Mi/to}-1] = r»+ KZ cm.nz\
n-X

That this defines the Faber polynomials uniquely can be shown by

recurrence over m. We prove the following theorems:

Theorem III. The mth Faber polynomial of the function f(z) is

P=m m

(9) Fm(t) = 4>-m.o + E —fp.mf.
p-x   P

Theorem IV. Let Fm(t) be the mth Faber polynomial of f(z) and let

Fn(t) be the polynomial defined by

(10) Flit) = — F'm(t).
m

Then

p=m

(ii) F*(t) = E/*..»'"-1-
p=X

Theorem V (Change of base). Let f(z)E& and g(z)E&. Then

*(*)=/{«(*)} « also GO. Let Fm(t) = EjJI? Fm,^, G„(0
= E?=o ^m.pi". andKm(t) = E»=o ^m.^be the mth Faber polynomials

off(z), g(z), and k(z). And let Fm(t) ̂  (\/m)F,m(t), G*(t) = (l/m)Gm(t),

and K*(t) = (l/m)k'm(t). Then the following relations hold:

p*=m

(12) Km¡n  =    2^Gm,pFp,n,

(i3) x!w = E *..-tf(0.
«-i

Theorem VI (Generating functions). We have, respectively,

xf'(x)        1 «=+•
(14) -^-^-= 1 + E Fm(t)xm

fix)   l-tf(x) tl

and

f(x) m—t«o

(i5) . J\' . - £/£«)*-.
1 - //(x) „=1
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Theorem VII iGrunsky's theorem). We have in (8):

(16) ncm.n = mc„,m.

Theorem VIII (Schiffer's theorem). We have, for f(z)E&:

/(»)-/(!)                                            /(W)
log-— = - log /i,i + log-

if — Z TO

(17)
/(,) -.-H»   1

+ lüg-2-1      — Cm,nWmZH.

Z m,n=X    m

Proof of Theorem III. We have, for mal,

p—m p«=w r"   »■=+« "1

E *--.-,[/(•)]-' = E*-m.-p   E /-p.»2"
p—0 p==0 L   n——oo -1

n—+<o r" p=m ""I

=    E        E <P-m.-Pf-P.n    Z".
n—   oo L p=0 -J

But

p»+« p= m

^ .   V—«,—jy—p.n ==     x ,  <p—m,—PJ—P,n = O—m,n>

p—-« p«—n

Whence, for n£0,

f • V—m.—pf—p.n —  Ô_m>n.

p-0

Therefore

(is) eV".,-*[/(z)]-» -■ r-- +"e° r iv»,-f/-,.»i «",
p=0 n=l   L p=0 J

which proves that the polynomial Fm(/) = E'-o <P-m.-ptp is the mth

Faber polynomial of/(z), whence, using (4), we get (9). Incidentally,

comparing equation (18) to equation (8) and noting that, for w^l,

/o,n = 0, we also find that, for m, n=T:

p=m

(19) Cm,„ =    E <t>-m.-pf-P.n-
P~X

Proof of Theorem IV. We have (11) from (10) by differentiating

(9) and dividing by m.
Proof of Theorem V. Let <b(z), y(z), and k(z) be the inverse

functions of f(z), g(z), and k(z). Then, by Theorem III, equation
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(12) is equivalent to

p=m

K—m.—n  =     / . y~m,—pV—p.—n«

But this results from k(z) =y {<p(z)} and Theorem I. To prove (13) we

have to show that E?-? kp,mt'-l= E¡Z? g,.m[Ti"'f,Jw~l] or that

kp.m= E«-p/p.«?«.»>• which results from Theorem I.

Proof of Theorem VI. We first prove (14). We have:

f(v\ p=+oo p_+oop  in=+oo "1

r^sh- 2 [/Wlv*- E    E/,-*•»>
»»=+« p p==m»=+o5 p p=m ~|

E   E/,.-**-1 *■
m«l    L p=l Jm—=1    L. p—1

which, by (11), proves (15).

To prove (14) we write (15) as

f(x)/[\-tf(x)]=   E    -F'm(t)xm
m-i    rat

and integrate it with respect to /. We find

m=+oo      J

- log [1 - //(*)] =  Z   -Fm(*)*m + g(x)
m-=l     ra»

where g(x) is introduced by the integration. We now derive with

respect to x and find :

tf'(x) m=+x

(20) ; ;    =  E ^W*"-1 + *'(*)•
1 - ¿/(*)       m_i

Putting / = 0 and noting that Fm(0) =<p-m,o we find

tw™ [ CO

o =  Z ¿--».o*-1 + g'(x).
m-1

But, by (5), EZ:¡j- <¿_m,„*"-'=/'(*)//(*)• Hence

«'(*) = - /'(*)//(*) + I/*-

Putting this into (20) and multiplying by x we prove (14). We note

that the expression for (14) may make it desirable to put, by defini-

tion, F0(t) = 1, a definition in conformity with (8) and (9). One would

then put Fo*(t)=0, a definition not in contradiction with (10) and

(11).



552 ERI JABOTINSKY [August

Proof of Theorem VII. We have, remembering that, in (8),

m, m^I,

p=-Ho P=— X

2-,   <t>-m,-Pf-P,n  =     2-i   <$>-m,-pf-p,n + <t>-m,ofo,n
pa—m p=~oa

p=+00

~T~     / .   0—m,—pj—p.n O—m,n»

p-1

But/o,„ = 0 for «>0 and 5_m,„ = 0 because —m<0 and w>0. There-

fore, changing p into — q in the first sum, we have

i*4-oo p=-4-oo

2-1   <t>-m,qfq,n +    2-1   ^-m.-pf-p.n  =  0.
«=1 p-1

Using (4), put 4>^m.q=-(in/q)f-q,m and fq,n=(q/n)<b-n, _, in the first

sum. The above equation becomes:

g=+oo            ^ p=H-oo

2^-4>-n,-qf-q,m +    ¿-i   <l>-'n,-pf-p.n =   0
«-i        n j^i

or,   according   to   (19),

—   (m/n)Cn,m + Cm.n  =  0,

which proves the theorem.

Proof of Theorem VIII. Multiplying both sides of (8) by wm

and summing over m, we find, using (14),

Wf'(w) 1 "Ç+" m,n-+«>

/(to)     1 - f(w)/f(z) _i m,„_i

or

/'(to) f(z) 1        1
E cm,nwmzn,

/(to)   f(z) — f(w)       w   z - W m,„_i

which can be written

/(w)       /(z) - /(to)       to       Z - TO TOia_i

Integrating over w we find:

/(to) - f(z) /(to) -■=*-
log-log-g(z)   =   —       2-,      Cm.nW^h"

TO — Z TO m,n=i

where g(z) is introduced by integration. Putting to = 0 we find:
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log-log /i,i - g(z) = 0
z

which proves the theorem.

Noting that we have log ((f(w) -f(z)/(w-z)) = Em£o"" dm,nwmz"

with dm,n = dn,m in the vicinity of w =z = 0, and expanding the left-

hand side explicitly in a double power series in w and z, it can

be shown that if <pm,n be defined by (4) and (5), then Ep-Í » <Pm,pfP,n

= 5m,„, which furnishes an alternative proof of Theorem II, due to

M. Schiffer.
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