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SOLUTION OF BERNSTEIN'S APPROXIMATION PROBLEM1

HARRY POLLARD

In his famous monograph on approximation theory [2], S. Bern-

stein initiated the study of the closure properties of sets of functions

{unK(u)}ô on the real line. It is supposed that K(u) is continuous

on (— 00, co) and that unK(u) vanishes at u= ± 00 for each value of

n. The problem is to decide when the set {unK(u)} is fundamental in

the space Co of functions continuous on (— 00, »), vanishing at

+ 00, and normed by ||/|| =max \f(u) \. So far no necessary and suffi-

cient conditions have been given. A recent paper of Carleson [3] re-

views most of the known results, but the paper [l] which seems to

come closest to the true conditions has been overlooked.

It is the purpose of this note to give a complete solution. It applies

to either real- or complex-valued functions and may be read either

way.

Theorem. In order that {unK(u)}ô be fundamental in Co it is

necessary and sufficient that

(1) K(u) 5¿ 0, -oo<M<co;

*> log I K(u) I
-du = — 00 ;

00 1 + M2

and that there exists a sequence of polynomials pn such that

(3) lim pn(u)K(u) = 1;      | pH(u)K(u) \úC,      - =0 < « < ».
n—»00

1. The necessity. The necessity of (1) is obvious and of (2) is well

known [l; 3]. To prove the necessity of the remaining conditions let

0„(w) denote the continuous function which is unity on (—n, n),

vanishes outside ( — « — 1, » + 1), and is linear in the remaining in-
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tervals. Since \unK(u) ] is fundamental there exists for each n a poly-

nomial pn such that

| pn(u)K(u) - 0„(«) | = 2-».

Now let »—» » and (3) follows.

2. A lemma. To prove the sufficiency we shall need the following

result.

Lemma. Let a(x) be of bounded variation on (— »,  <»). Then the

functions

daiu)i   r°°   daiu)
F±ix) = «'(s) ± - —^

■K  J _„     X —  «

exwi almost everywhere when the integral is interpreted as a principal

value. Moreover

(2.1) f
log  it(«)     .   .

as < oo
1 + s2

for at least one choice of the ± sig«, unless a is substantially a constant.

The first part of the theorem follows from a result of Loomis [4]

on Hilbert transforms. Note that (2.1) is the same for either choice of

sign if a is real, so that the complication comes from the possibility

that it is complex-valued.

To establish (2.1) consider the function

i    f*  da(u)
H(z) = — I      -1 z = x + iy.

x J_w z — u

H(z) is analytic for y>0 and for y<0. It cannot be identically zero in

both half-planes unless a is substantially a constant. Ruling out this

case, we may assume 77^0 in one of these half-planes, say y>0. We

shall establish (2.1) with the + sign.

Now 77= U+iV, where U(x, y) and V(x, y) are defined by

U(
y   C« da(

x> y) = — I    7-:
x J _„   (x — u)ix - u)2 + y2

and

1   rx   ix
Vix, y) = - ■}-

T J-~    IX

daiu)

■«)H

1   rw   ix — u)daiu)

ix - u)2 + y2

Since



1953) SOLUTION OF BERNSTEIN'S APPROXIMATION PROBLEM 871

/»  00 rk  OC

I     | tf (*, y) | dx g  )     | <fo(ii)
J -00 •'   — 00

it follows from Schwarz's inequality that

'■  \U{x,y)\*l*

/.: 1 +  X2
dx èC < oo.

As for F(«, y), an argument used by Titchmarsh [6, pp. 144-145]

shows that

r-   | V(x, y) I1/2

J-„       1+ a;2

¿* ^ C < oo.

(Titchmarsh proves this when a is an integral, but his argument is

quite general.) Consequently

/:

H(x+ iy)]1'2
dx^C < ».

1 + x2

Map the half-plane /z>0 into the unit circle \w\ <1 by z

= i(l—w)/(l+w). If we write ît) = re'9, h(w)=H(z), then dö

= 2(l+a;2)-1da: and the preceding formula becomes

/.

2t

| h(reif) Y'2de gC<«, Oir<l.
o

A standard argument (see, for example, [5, pp. 19-20]) shows that

h(reie)\\ dB g C < oo.I log
0

Since A is of class H112 the limit h(ea) =limr<i A(retf) exists almost

everywhere. Hence by Fatou's lemma

/■ 2t | log I *(«*•) 11 de ¿ c < oo.
0

Mapping back, we get

I      ~—" —'-.-~L!~ dx < oo.
log | H(x + tO)

1 + *2

It remains only to identify H(x-\-iO) with F+(x). This amounts to

showing that almost everywhere

lim   U(x, y) = ot'(x),
»-0+
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(2.2) lim
daiu)

v-*o+

1   C"   d«0
V(x, y) = - I     —

T  J _-,     X —

Each of these is well known if a is absolutely continuous [6, Chap. V].

It is therefore enough to prove them when a is singular, that is, when

a'ix)=0 almost everywhere. We shall prove only the second, (2.2),

the argument for the first being similar and easier. For simplicity in

printing we also write "y—>0" for "y—»0 + ".

Let Xo be a point for which /"„da («)/(# — «) exists and for which

a'ixo) =0. This is true for almost all x0. By a change of variable we

may assume x0 = 0 and (2.2) becomes

udaiu) f °° daiu)
lim

/"   udaiu) r '

- «2+ y2     J-»-*) J _M u2 + y2

Clearly it is enough to show that

/' °°   udaiu) C °° daiu)

o    ul + y2      J y       u

/°    udaiu)         C -* da{u)- — I      -= 0.
-oo u2+ y2       J _„      u

We confine ourselves to (2.3).

In (2.3) replace a by ß=a—a(0) and integrate by parts. Since

/3'(0)=0, (2.3) reduces to

(      ¡"° d u (•*> ßiu)      )
lim \-  I    0(«)- —-— a« - I      -j- «fel  = 0.
ji-K>    \     J 0 du  u2 + y1 J y        U2 )

Because ßiu) = o(w), w—»0, we have

/.

"du
P(«) —     .  .     „ du = oil), y -» 0,

3« m2 + y2

and the problem is further reduced to showing that

/••*      id     u        n

The last integral, after a change of variable, is

yu

which is dominated by

J i VW WM   M2 +  1 «7
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•s;ß(yu)

yu

du

M»

Because ß is bounded, j8(0) =0, and j£?'(0) =0, the expression ß(yu)/yu

approaches zero boundedly on l^«<oo as y—»0. Consequently

the preceding expression converges to zero with y, and the proof is

complete.

3. The sufficiency. Assume that (1), (2), (3) hold. Suppose that

(3.1) f    u»K(u)d<r(u) = 0, « = 0, 1, •••,

where a is of bounded variation. We must show that a is substantially

a constant.

If it is not we may form the function

1   /■•   do(u)
s(x) = — I      -

x •/_-  a; — «

and conclude from the lemma that for some choice of the ± sign

log | <r'(x) ± is(x) 11
(3.2) f

•J —.
dx < oo.

1 + *2

Since K(u)^0, a similar remark applies to the function

K(u)d<r(u)1   r°° K(u)d*(*
g(x) = — I     -

T  •/_„ £ —  M

and we have

log | K(x)a'(x) ± ig(x)

(3.3) /_' 1 + x2
dx < oo.

It is important to know that we may choose the same sign in

both (3.2) and (3.3). According to the proof of the lemma we can do

this if the functions

do-(u) /•" K(u)dar(u)/" da(u) C——,       G(z) =  I
-oo  Z — U J _ z — u

have a common half-plane, y>0 or y<0, in which neither is identi-

cally zero. The identity

1          Í       u                   «n_1 «n

(3.4) -= _++...+-+
— «      z       z2 z"       zn(z — u)
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and (3.1) enable us to rewrite G(z) as

unK(u)da(u)
Giz)

1   /•«

znJ „ z — u

Consequently for each polynomial pn of (3) we have

pn(z)G(z) =   I-daiu).
./ _„      z — «

Since z is not real, (3) enables us to conclude that

(3.5) lim pniz)Giz) = Siz).
n—»»

Now 5(z) is not identically zero in at least one of the half-planes, say

y >0. Hence, by (3.5), G(z) cannot vanish there identically either. We

may therefore assume that both (3.2) and (3.3) are valid with the

+ sign.

In the identity (3.4) replace z by x. The resulting formula and

(3.1) enable us to rewrite g(x) as

1    If» unKiu)d<riu)1    1   r
gix) - - - j

Xn    IT  J _ x — u

so that

and

1   r pnju)Kju)
Pn(x)g(x) = — I- daiu)

v J _„      x — u

1     C   pniu)Kiu)   -   1
PÁx)gix) - six) = — I      -daiu).

X J_„ x — u

By another result of Loomis [4] the measure of the set for which

I PÁx)g(x) — s(x)\ >e is at most

- f    | pn(u)K(u) - 1 | | da |,

where A is an absolute constant. In view of (3) this approaches zero

as n—><». Hence pn(x)g(x) converges to s(x) in measure, so that a

subsequence converges almost everywhere to s(x). By (3), pn(x)

converges to \/K(x). Therefore

g(x) = K(x)s(x)

for almost all x. From this identity we obtain
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K(x)c'(x) + ig(x)
K(x) =-•

o'(x) + is(x)

Note that by (3.2) and (3.3) neither the numerator nor the de-

nominator can vanish on a set of positive measure. Moreover by

these same results

/.:

log | K(x) ||
dx < oo,

1 + x2

which contradicts hypothesis (2).

Therefore a must be substantially a constant, and the proof is

complete.
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