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1. Introduction. Theories have recently been formulated, by

Hirschman and Widder [l; 2; 3], for the inversion of convolution

transforms of the type

(1) fix) = ff(x) =        G(x - t)<p(t)dt.

Here

(2) G(t) = f
e'

Y(s)

where

(3) e(s) - n 0 - s'a:1)
71-1

and

(4) H a~n
—2

a
n-l

is convergent. These authors prove that (1) can be inverted by the

differential operator

m

(5) E(D)f(x) =  lim   J! (1 - .dV)/(*) = *(*),
Í71-.»       n=l

where D stands for differentiation with respect to x. They also con-

sider other forms for E(s), such as

00

(6) -     E(s) - e»«n (1 - s/an)e'ia»

with condition (4) satisfied, and similar convolution transforms.

The object of this paper is to generalize the form of G(t) by replac-

ing the exponential factor in the integral on the right of (2) by gen-

eralized Fourier kernels [4, chap. 8]. Owing to the complexity of the
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formulae obtained I do not aim at complete generality and will con-

fine myself largely to the case of the Bessel function kernel. I shall

indicate briefly how this can be further generalized in §4, after stating

and proving the main theorem in §3.

2. The Bessel function kernel. For our purposes it is more con-

venient to put (1) in a somewhat different form. We write

x — log u   and   / = — log v

in (1) and obtain, after some obvious changes,

(7) fx(u) =  f  g(uv)<bx(v)dv.
J 0

The kernel g(uv) of (7) lends itself more readily to our discussion

than does the kernel G(x—t) of (1).

It is well known that if J,(x) and Y,(x) denote the standard solu-

tions of the Bessel equation of order v, then xll2J,(ux) and xll2Y,(ux)

both satisfy the equation

(8) {D, + („,_^liZi)},_„,

where D, here and in the rest of this paper, denotes differentiation

with respect to x. Consider now the equation

C (xuW2J,(xu) ( /•- )
(9) /(*)=J     ~m¿)       \J0   (.™ynj¿«v)4>iv)dvjdu,

where

(10) £(«) = n (1 + «V)
n-l

and

(11) £ an*
n-I

is convergent. From (8) we have

h _ 1 (D* _ !lzi^\l {xuUt{xu)}
(12) l       aA *      )S

=  (l + -\ X^Jrixu).
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We now proceed formally and postpone the discussion of the

analytical difficulties to §3. By continuous application of (12) to (9)

and by differentiating through the integral sign we have

=   f   (xuyi2J,(xu) I f   (uvyi2Jr(uv)4>(v)dv\du

(14) = <p(x)

by Hankel's theorem [5, p. 456].

Again, on changing the order of integration in (9), we have

/•"if uJr(xu)J,(uv)      )
\\   —v ; v    du\ (xvy>2<t>(v)dv.

o    Uo E(u) )

Thus, on writing

(16) K(x, v)=  f
J 0

uJ ,(xu)J ,(uv)
du,

E(u)

we see that the equation

(17) /(*) =  f   K(x, v)(xvyi24>(v)dv
Jo

is inverted by the differential operator of (13).

When v2 = 1/4 these results specialize to results equivalent to those

of (1), (2), and (3).
The integral in (16) does not often reduce to a simple form. But in

the special case when

(18) E(u) = 1 + u2/a2

we have [5, §13.53], for v> — 1,

/,oc          u la2I,(ax)Kv(av),        x 5£ v,
-J,(xu)J,(uv)du = \

o    (1 + u2/a2)                                \a2I,(av)K,(ax),        x ^ v.

Here I,(x) and K,(x) are Bessel functions of purely imaginary argu-

ment, defined as follows [5, §3.7]

- (x/2)2n+' x //-(*) - Ux)\
(20)      I,(x) = H -—-'    K,(x) m —[ —^-—).

Zi n\Y(n + v + 1) 2 \       sin tv        )

It follows that the inversion of
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/(*) =  f   a2I,iav)K,iax)ixvyi2<biv)dv
Jo

+ f   a2Iriax)K,iav)ixv)1i2^iv)dv

(21)

is given by

(22) l1-^-1^}'«-
This simplifies still further in the case when e = l/2 for we have

(23)        Ix/2ix) = (2/rx)1"tàah x    and    Kl/t(x) = f>/2$*V-'.

(22) is then easily verified by direct differentiation.

3. Statement and proof of main theorem. In the following theorem

the kernel K~ix, v) is defined by (16) and the function P(«) by (10).

If (i) v^Z —1/2, (ii) an is real for all positive integral values of n

and ¿_,ñ-i añ2 is convergent, (iii) <£(»)£L(0, oo), and (iv) </>iv) is of

bounded variation in the neighborhood of v = x, then the integral

transform

(A) /(*) =  f   Kix, v)ixv)1i2(b(v)dv

is inverted by the differential operator

(B)    "=l1       a"V *       /f

= — {<b(x + 0) + <p(x-0)}.

The proof will allow for the possibility that am= <x> for m>m9,

where m and m0 are positive integers and «»^1. In this case E(u) in

(10) reduces to a finite product and we shall incidentally justify the

example of §2 in which E(u) is defined as in (18).

We commence the proof by noting that the asymptotic expansion

of the Bessel function [5, chap. VII ] is given by

(24)        J.M ~ (If c (,-i „ - I..){,+ 0Í±$ .
Also, from the general theory of expansion of entire functions into

infinite products, we know that there exist positive constants M and

Mo such that for any positive integer p we have [3, §2 ]
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(25) 0 < \/E(u) < M/W, 0 < Í/Em(u) < M/w,

where « > «o and

(26) Em(u) = Û (1 + ««»')•
n—irt-r-l

Since, from (ii), E(u) is a convergent infinite product, we have

(27) lim Em(u) = 1.
71—*»

From (24) it is evident that xll2J,(x) behaves like sin x or cos x

for large values of x. Hence, except for the factor l/E(u), the inte-

grands in (9) behave in much the same way as the integrands in the

well known sine and cosine Fourier transforms. If we differentiate

(9) with respect to x through the integral sign it follows from (iii),

(24), and (25) that the resultant integral is uniformly convergent

with respect to x. This is also true if we differentiate in this manner a

finite number of times. Consequently, on applying the differential

operator (12) m times to (9), we conclude that

5K(*-^)} fix)

/" (xu)xl2j,(xu) ( r°° )
—-—\ I    (uvyi2J,(uv)<t>(v)dv\du

o          Em(u)       {Jo '

=    f      Pm(x, U)du

say. We shall also write

f   P(x,u)du=  f   (xuyi*J,(xu) \ f   (uvyi*J,(uv)<p(v)dv\du
(29) J° ° Ut )

= <P(X)

from (i), (iii), and (iv) by Hankel's theorem [5, §14.4]. Hence

(30) = f   {Pm(x,u)~P(x,u)}du+ f   Pm(x,u)du
Jo J x

o

P(x, u)du.L
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From (29) and the principle of convergence, given a positive e,

however small, we can find an X0 such that

(3D
I Cz

I    P(x, u)du
\Jt

<«/3,

for all values of Y and Z satisfying the inequalities Z> Y>Xo- Evi-

dently Em(u) ^ 1 and Em(u) decreases steadily as u increases. We may

therefore apply the second mean value theorem [6, §4.14] and de-

duce that

(32) irPm(x, u)du
i    rT
- I    P(x, u)du
(Y) JrEm(Y)

<e/3,

where Z>T> Y>Xo- This choice of X0 is the same as for (31) and

so is independent of m. From (27) we see that for any prescribed X

an mo can be found such that the first integral of (30) is, in absolute

value, less than e/3 whenever m>m0. To sum up, given any positive

e we can first choose X, independent of m, and then choose mo so

that the absolute values of each of the integrals of (30) is less than

e/3 for m>mo. We therefore have

(33) Hm   ft {l - -2(l>2 - ^—lä)\ftx) = fa),
m—    n=l  ( at \ X2        /)

which establishes (14).

To complete the proof we must establish (17), i.e. justify the

change in the order of integration in (9). Denote the integrand of (9)

by Q(x> u< v)- From (iii) and (24) it follows that the integral with

respect to v in (9) is uniformly convergent with respect to u, in the

interval 0 ̂  u á U, for any positive U. Hence

I     \ I    Qix, u, v)dv\ du

=  |     <  I    Qix, u, v)du> dv

=  1     <  I    Qix, u, v)du> dv — I     < I    Qix, u, v)du> dv.

From (24) and (25) it follows that a constant K exists such that

/"( /•" )     I      r*.        .      r°°   K< I    Qix, u, v)du\ dv   g  I     I fa) | dv I       — du,
o    \Ju ) Jo Ju    up

(34)

(35)
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for sufficiently large U. If E(u) is an infinite product, as in (10), p

can be any positive integer. If am= oo for m>m0^l, i.e. E(u) is a

finite product, we still have p*z 2. From (iii) it then follows that

(37) lim    |     | I    Q(x, u, v)du\ dv = 0.
r/-»<o J o    \J u *

On applying this result to (35) we see that

(38) lim    |     <  f  ()(*, «, v)dvi du =  f    <\    Q(x, u, v)du\ dv.
V-»x   J o      V J 0 / J 0      \J 0 )

The change in the order of integration in (9) is thus justified and the

inversion of (A) by the differential operator (B) is therefore estab-

lished.

4. Generalization of previous results. The methods used in §3 to

invert

(39) /(*) =  f   K(x, v)d>(v)dv
J o

by a differential operator can be generalized if two essential require-

ments are satisfied. In the pair of reciprocal formulae

(40)
/I oo ¿» oo

h(xu)f(u)du;   f(x) =   J     k(xu)g(u)du
0 J 0

the functions h(x) and k(x) are known as generalized Fourier kernels

and when h(x) =k(x) they are said to be symmetrical. An account of

these functions is given in Titchmarsh [4, chap. VIH]. We shall

confine ourselves to the case of bounded symmetrical kernels whose

Mellin transforms are products of gamma functions [4, §8.12]. For

large values of x the kernel h(x) then behaves like cos x or xll2J,(x)

and so, whenever necessary, the arguments of §3 can be used to

justify a change in the order of integration or in the order of integra-

tion and proceeding to a limit.

The first of these two requirements is that K(x, v) in (39) should

be of the form

/"*  h(xu)h(vu)
du,

E(u)

where h(x) is a symmetrical Fourier kernel and E(u) is as defined in

(10) with condition (11) satisfied.

The second of the two requirements is that y = h(ux) should satisfy
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a differential equation of the type

(42) L(x, D)y = - u2y.

Here L must be a function of x and D, which denotes differentiation

with respect to x, and must not contain u or y. (42) is evidently a

generalization of (8) and is a type of differential equation which fre-

quently occurs in the theory of eigenfunction expansions. Many

Fourier kernels beside the Bessel function satisfy differential equa-

tions such as (42).

Consider now the equation

/'" h(xu) [/•" 1
—— {        h(uv)<t>(v)dv[du,

o     E(u)  \Jo )

where, in addition to the assumptions for h(x) stated above, we as-

sume that <b(v)E.L(0, oo) and is of bounded variation near v = x. By

using the arguments of §3 we deduce that

(44) Ü jl - ~^\ /(*) = /   *(«•) {/ " k(uv)<p(v)dv\ du

(45) = *(*).

Equation (45) is deduced from (44) by means of the generalized

Fourier theorem [4, p. 232]. On changing the order of integration

in (43) and defining K(x, v) as in (41) it follows that (39) is inverted

by the differential operator of (45).
These results can be extended to the case of the unsymmetric

Fourier kernel, i.e. when h(x)?¿k(x) in (40), but such generalizations

are necessarily intricate.

References

1. I. I. Hirschman, Jr. and D. V. Widder, Generalized inversion for convolution

transforms, Duke Math. J. vol. 17 (1950) pp. 391-402.
2. -, Generalized inversion formulas for convolution transforms, Duke Math.

J. vol. 15 (1948) pp. 659-696.
3. -, The inversion of a generalized class of convolution transforms, Trans.

Amer. Math. Soc. vol. 66 (1949) pp. 135-201.
4. E. C. Titchmarsh, The theory of the Fourier integral, Oxford University Press.

5. G. N. Watson, The theory of Bessel functions, Cambridge University Press.

6. E. T. Whittaker and G. N. Watson, Modern analysis, Cambridge University

Press.

McGill University


