ZEROS OF SELF-INVERSIVE POLYNOMIALS
GERMAN ANCOCHEA

1. Introduction. In a recent paper [2] F. F. Bonsall and Morris
Marden have given a new proof of Cohn’s theorem [3] concerning
the polynomials whose zeros are symmetric in the unit circle C: |z|
=1. The proof, though simpler than Cohn’s, became complicated by
the consideration of many cases according the behaviour of the poly-
nomial on |z| =1. In the present note we give another proof of Cohn’s
theorem sensibly simpler than the previous ones.

2. Self-inversive polynomials. Let f(2) be a polynomial
f(&) = a0+ az+ -+ - + a3™
We denote by [f(z)]* the polynomial

U@ ]* = Z"‘f@—= Gz + 8z + - - +

inverse of f(z), whose zeros are symmetric to f(3)’s zeros with respect
to C. For every f(2) one has, on Iz[ =1,

| 1@ | = [1=)]*]-
A polynomial

(2.1) g(@) =bo+ biz+ -+ + bmz™
is said to be a self-inversive polynomial when
(2.2) 8@) = clg@J*, lel = 1.

Let g(2) be the self-inversive polynomial (2.1) and let g’(2) be its
derivative. From (2.2) follows the identity

(2.3) 2g'(2) + clg'(®) ]* = mg(a).

3. Cohn’s theorem. Let g(z) be the self-inversive polynomial (2.1).
Then g(z) has the same number of zeros inside the unit circle C as does
the polynomial

clg@]* =mbo + (m — Dbz + - -+ + bprz™ 1.

For the proof of the theorem we shall need only Rouché’s theorem
and the following lemma, whose indirect proof based on zero's con-
tinuity is immediate.
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LEMMA. Let € be a real positive number. If, for every N such that
0<N\<¢, the polynomial

f(z) + AR(N, 2)

has a fixed number h of zeros inside C, the number of seros of f(z) inside
Cis Zh.

In [2], besides Rouché’s theorem and the preceding lemma, essen-
tial use is made of another lemma which is a consequence of the fol-
lowing one given in [1]: for every self-inversive polynomial g(z) (2.1)
one has, on |3 =1, |g'(2)/2(2)| =m/2.

4. Proof of the theorem. For the sake of brevity we shall denote by
p and p, respectively the number of zeros inside C of g(z) and ¢[g’(s) ]*.

(a) p1=p. Let e be a positive real number such that for 0 <\ <e the
polynomial

g((1 = N)2)

has inside C the same number p of zeros as does g(z). By (2.2) we
have

clg((@ = NR)]* = (1 = Nmg(s/(1 = N).
On the other hand, Rouché’s theorem assures that the polynomial
H\, 2) = g((1 = Nz) — (1 = Nme[g((1 — Na)]*
=g((1 = N2z) — (1 = N?2mg(z/(1 = N))
has also p zeros in |z| <1. We write H(\, 2) in the form
HQ\, 2) = H(0, 5) + NHY (0, 2) + MR, 3).
Since H(0, 2) =0, one has

-)lt H(, 2) = H{(0, 5) + NR(\, 2) = (— 23¢(s) + 2mg(3)) + AR(), 2)

= 2[g'(2) |* + AR, 3).

Hence, from the lemma, p;<p.
(b) p=<p1. On lzl =1 we have

|¢@ | =e@| = lg@F| =]clg@]*|.
Let 0 <A <1. From Rouché’s theorem it follows that the polynomial
(4.1) clg@]* + (1 = Nzg'(a)
has p; zeros in [zl <1. But, by (2.3), (4.1) can be written in the form
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(clg'@)]* + 2¢'(2)) — N3g'(s) = mg(z) — Nag'(2).
Then the lemma gives p < p1. This completes the proof of the theorem.
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MEASURE EXTENSIONS AND THE MARTINGALE
CONVERGENCE THEOREM!

SHU-TEH CHEN MOY

1. Introduction. In 1940 J. L. Doob proved the following martin-
gale convergence theorem [3].
Let {%a, Fn, n21} be o martingale® with

sup {E[| x,.l |in 2 1} < o,

Then {x,.} converges with probability 1 to a random variable x., of
finite expectation.

In 1946 E. S. Andersen and B. Jessen proved some limit theorems
on derivatives of set functions [1]. One of the theorems is closely re-
lated to the martingale convergence theorem and is stated below.

Let $:CHC - - - CFaC - - - be a nondecreasing sequence of Borel
fields of subsets of a nonempty set Q. Let P be a probability measure de-
fined on the smallest Borel field ¥.. containing all the ¥,’s. Let ¢ be a
bounded, countably additive set function defined on ¥ ... Let P, ¢ be the
contractions of P, ¢ to F. respectively and suppose that each ¢, is ab-
solutely continuous with respect to P,. Let x, be the derivative of ¢n
relative to P.. Then {x.} converges, except on a set of P measure 0, to
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1 This work was done while the author was Emmy Noether Fellow of Bryn Mawr
College. It is based on a portion of the doctoral thesis submitted to the University
of Michigan. The thesis was written under the supervision of Professor J. L. Doob of
the University of Illinois.

? Numbers in brackets refer to the bibliography.

3 For the definition and properties of a martingale see (2, Chap 7].



