
ZEROS OF SELF-INVERSIVE POLYNOMIALS
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1. Introduction. In a recent paper [2] F. F. Bonsall and Morris

Marden have given a new proof of Cohn's theorem [3] concerning

the polynomials whose zeros are symmetric in the unit circle C: \z\

= 1. The proof, though simpler than Cohn's, became complicated by

the consideration of many cases according the behaviour of the poly-

nomial on | z\ = 1. In the present note we give another proof of Cohn's

theorem sensibly simpler than the previous ones.

2. Self-inversive polynomials. Let/(z) be a polynomial

/(z) = a0 + axz + ■ ■ ■ + anzn.

We denote by [/(z) ] * the polynomial

[f(z)]* = «"-/i—J = doz" + i*-1 + ■■■ +än,

inverse of/(z), whose zeros are symmetric to/(z)'s zeros with respect

to C. For every/(z) one has, on \z\ =1,

|/(*)|«|L/(*)J*|.
A polynomial

(2.1) g(z) = h + bxz + ■ ■ ■ + bmz">

is said to be a self-inversive polynomial when

(2.2) g(z) = c[g(z)]*, |c| = l.

Let g(z) be the self-inversive polynomial (2.1) and let g'(z) be its

derivative. From (2.2) follows the identity

(2.3) zg'(z) + c[g'(z)]* = mg(z).

3. Cohn's theorem. Let g(z) be the self-inversive polynomial (2.1).

Then g(z) has the same number of zeros inside the unit circle C as does

the polynomial

c[g'(z)]* = mh + (m- \)bxz + ■■■ + bm-Xzm~K

For the proof of the theorem we shall need only Rouché's theorem

and the following lemma, whose indirect proof based on zero's con-

tinuity is immediate.
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Lemma. Let e be a real positive number. If, for every X such that

0<X<€, the polynomial

fit) + \R(\, z)

has a fixed number h of zeros inside C, the number of zeros of f(z) inside

C is = h.

In [2], besides Rouché's theorem and the preceding lemma, essen-

tial use is made of another lemma which is a consequence of the fol-

lowing one given in [l]:/or every self-inversive polynomial g(z) (2.1)

one has, on \z\ =1, |g'(z)/g(z)| èw/2.

4. Proof of the theorem. For the sake of brevity we shall denote by

p and pi respectively the number of zeros inside C of g(z) and c [g'(z) ] *.

(a) pi = p. Let e be a positive real number such that for 0 <X < e the

polynomial

*(d - m
has inside C the same number p of zeros as does g(z). By (2.2) we

have

c[g((i - \)z)]* = a - \)"S(z/(i - \)).

On the other hand, Rouché's theorem assures that the polynomial

H(\, z) = g((l - X)z) - (1 - X)-e[g((l - X)z)]*

= g((l - X)z) - (1 - X)«-i(*/(l - X))

has also p zeros in \z\ < 1. We write H(K, z) in the form

H(\ z) - H(0, z) + Xffx'(0, z) + \2R(\ z).

Since H(0, z) =0, one has

1
— H(\ z) = H¿(0, z) + \R(\, z) = (- 2zg'(z) 4- 2mg(z)) + \R(\ z)

A

= 2C[g'(z)]* + XJ?(X,z).

Hence, from the lemma, pi^p.

(b) p^pi. On Iz\ =1 we have

\zg'(z)\ ^\g'(z)\ =\[g'(z)]*\ =\c[g'(z)]*\.

Let 0<X<1. From Rouché's theorem it follows that the polynomial

(4.1) 4g'(z)]* + (I - \)zg'(z)

has pi zeros in | z\ < 1. But, by (2.3), (4.1) can be written in the form
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(c[g'(z)]* + zg'(z)) - Xzg'(z) - mg(z) - \zg'(z).

Then the lemma gives p^px. This completes the proof of the theorem.
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MEASURE EXTENSIONS AND THE MARTINGALE
CONVERGENCE THEOREM1

SHU-TEH CHEN MOY

1. Introduction. In 1940 J. L. Doob proved the following martin-

gale convergence theorem [3].*

Let {xn, yn, n ^ 1} be a martingale* with

sup [E[\ xn\ ]:•£ 1} < ».

Then {xn} converges with probability I to a random variable xx of

finite expectation.

In 1946 E. S. Andersen and B. Jessen proved some limit theorems

on derivatives of set functions [l]. One of the theorems is closely re-

lated to the martingale convergence theorem and is stated below.

Let JiCJiC • • • C7nC • • • be a nondecr easing sequence of Bor el

fields of subsets of a nonempty set ß. Let P be a probability measure de-

fined on the smallest Borel field yx containing all the yn's. Let <b be a

bounded, countably additive set function defined on yK. Let P„, <f>n be the

contractions of P, <b to yn respectively and suppose that each <bn is ab-

solutely continuous with respect to P„. Let xH be the derivative of (¡>n

relative to P„. Then [xn] converges, except on a set of P measure 0, to
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1 This work was done while the author was Emmy Noether Fellow of Bryn Mawr

College. It is based on a portion of the doctoral thesis submitted to the University

of Michigan. The thesis was written under the supervision of Professor J. L. Doob of

the University of Illinois.

* Numbers in brackets refer to the bibliography.

3 For the definition and properties of a martingale see [2, Chap 7].


