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For the application presented in this paper we shall use the follow-

ing restricted statement of a theorem proved by Mauro Picone.1

Theorem. Let R be a simply connected region in the xt-plane, where

O^t^T, with a part of the boundary of R being t = T and the remaining

part of the boundary being given locally by a curve ßix, t) =0. Further-

more, let uix, t) be a continuous and bounded solution of the heat conduc-

tion equation having continuous and bounded derivatives satisfying

uxx = ut in the interior of R, and let the solution be continuable into the

region for which t>T. If uix, t) assumes its maximum or minimum in

R, say at a point (£, t), other than at a point of the boundary ßix, t) =0,

then u is a constant in the subregion described as follows: the subregion

consists of all points of R which may be reached by a continuous curve

t=fis), x=gis), where í=/(j) is a monotonie non-increasing function

of s, starting from any point in R that lies on the line t=r.

As an engineering application of the Picone theorem, let us consider

the following design problem. It is desired to construct a unit for an

oven which controls the inside wall temperature of the oven and the

heat flux through the wall of the oven, where the oven is heated from

the outside, by placing a thermocouple on the outside of the wall of

the oven and another on the inside of the wall. We shall assume that

the oven is sufficiently large that any cross section of the oven wall

may be considered to be part of an infinite slab. Furthermore, we shall

assume that the oven receives its heat from a heater distributed uni-

formly over its entire outside surface. Thus, we shall determine the

amount of heat passing through each unit area of the inside of the

wall by the temperature drop between the outside and inside of the

wall. The temperature distribution uix, t) across the wall is, in general,

given by the solution of the differential equation

(1) auxx = ut

for the appropriate boundary conditions where ¡e is the space co-
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ordinate, / is the time, and a is the constant of thermal diffusivity.

The steady state solution, obtained by setting m( = 0 in equation (1),

is

(2) u = Ax+U

where kA ik being the constant of thermal conductivity) represents

the amount of heat passing through a unit area of the inside of the

wall per unit of time. Equation (2) gives the temperature distribu-

tion through the wall where U is the inside temperature and x is

measured from the inside of the wall outward, the wall thickness

being a. This choice of coordinate system makes A positive.

Temperature measuring devices of the type described above usu-

ally measure a temperature to within a known accuracy, say «>0.

Thus, the thermocouple cannot recognize the difference between a

temperature U and U±e. Similarly, when using two thermocouples,

temperature differences, AU, cannot be determined with an ac-

curacy greater than a known error y. That is, the two thermocouples

cannot recognize the difference between AU and AU±y.

Let us now try to operate the oven as near as possible to the steady

state condition in which the inside of the wall is to be maintained at

the temperature U with a temperature gradient A through the wall.

In order to analyze the operation of the control unit we shall write A U

as the difference between the desired temperatures at the outside of

the wall and the inside of the wall. Thus,

(3) At/ = aA.

Our control unit will operate as follows:

1) Should

«(0, <) à U + «

or should

»(0, t) < U + t,    but   bU > Ù.U + y

then

(4) uxia, t) = A - a

where a > 0 and

SU = u(a, I) - «(0, I).

2) Should

«(0, l)|!/'-f
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or should

m(0, t) > U - t,    but   SU < Ai/ - y

then

(5) uxia, t) = A + v.

3) neither of the rules 1) or 2) will act twice in succession.

We shall now assume that the oven wall completely encloses the

oven and that the object inside being heated always absorbs heat at a

constant rate such that

«,(0, /) = A

(for example, a substance undergoing a change of state where such

a change is known to occur at constant temperature).

Under the desired steady state operating conditions,

(6) Uxia, t) = A

and the difference between the rate of equation (5) and that of equa-

(6) is

Auxia, t) = a.

Similarly, the difference between the rates given by equations (6)

and (4) is

Auxia, t) = <r.

Thus, the heat inputs which govern the temperature gradients given

by equations (4) and (5) may be made as near as one wishes to the

desired input by choosing <r sufficiently small.

It is desired to determine if such a controlling device will cause

temperature fluctuations which will prohibit its usefulness. To this

end we shall show that if the temperature distribution ever lies com-

pletely within the xw-region, S, defined by the straight lines x = 0,

x = a, u = Ax+ U+ie+y), and u = Ax+U— (e+y), it will remain

within that region. If uix, t) remains in the region 5 we see that

At/ - 2(« + y) = SU = AU + 2(í + y),

that the

(SU)       AU
Um \-} =-= A,
«->»   U) a

and that the actual temperature gradient SU/a differs from the de-

sired by at most
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2(e + 7)
+ -,

a

a quantity which may be made as small as we please by increasing the

thickness of the oven's wall.

In order to consider the temperature fluctuations initiated by the

controlling unit, we must investigate the solutions of two heat con-

duction problems. The first is the solution of

(7) auxx = Ut

for the initial condition

(8) uix, 0) = h(x)

where

Ax+ U - ie + y) g, h(x) g Ax + U + (e + 7),

and the boundary conditions

(9) «,(0, I) = A

and

(10) ux(a, I) = A + a.

Let

»(y, t) = w(a1/2y, t) - Aall2y - U + (e + 7)

where y = x/a112. Then viy, t) satisfies the differential equation,

vvv = vt

of the Picone theorem in the half-open region R oí the y¿-plane de-

fined by the straight lines y = 0, y = a/a112, and ¿ = 0. viy, t) satisfies

the initial condition

(11) viy, 0) = h(ali2y) - Aall2y - U + (e + 7)

and the boundary conditions

(12) »„(0, 0 = 0

and

(13) Vy(a/all2, I) = «»'V.

Since the boundary condition (13) does not allow a constant solu-

tion, then, by the Picone theorem, the minimum of v(y, t) must lie

on the boundary defined by the lines y = 0, y = a/al/2, and t = 0.
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Furthermore, since the boundary conditions (12) and (13) define a

heat adding process, the minimum must lie on the boundary i = 0,3

say at y =£, Oá^fl/a"^ Thus,

viy, t) = vil 0) = kiaWÇ) - Aa1^ - U + (t + y)

^ Aa1'^ + U - (« + y) - Aa1'2^ - U + (e + y)

fcO,

and

«(«"»y, 0 - .4a1/2y - ¿7 + (« + y) ¿ 0

or

(14) uix, t) ^ Ax + U - (• + 7).

Let us re-examine the problem defined by equations (7), (8), (9),

and (10), but now let

w(y, t) = w(a1/2y, /) - Aa>>2y - U - (e + y).

w(y, t) also satisfies the differential equation, wvv = w¡, of the Picone

theorem in the half-open region R of the yi-plane. w(y, t) satisfies the

initial condition

(15) w(y, 0) = h(ali2y) - Aa'l'y - U - (e + y)

and the boundary conditions

(16) wy(0, /) = 0

and

(17) Wy(a/a1'2, t) = a><2ff.

Since the boundary condition (17) does not allow a constant solu-

tion, then, by the Picone theorem, the maximum of w(y, t) must occur

on the boundary of R. Furthermore, the boundary conditions (16)

and (17) represent a heat conduction problem in which heat is being

added at the surface, y = a/a112, of a slab of thickness a/a112 and the

surface of which at y = 0 is covered by an insulator. Thus, the maxi-

3 That the minimum must lie on the boundary line i = 0 may also be shown with

the aid of the Picone theorem. First, neither the maximum nor minimum can lie on

the line y=fJ for t>0. Since »,(0, /) =0, the solution may be reflected about the y=0

axis; then, by the Picone theorem, since a constant solution is not allowed, the maxi-

mum and minimum must lie on one of the boundary lines y = ±a/dlli or i = 0. Since

the boundary condition on y=a/a111 is uv{a/alli, I) =ain<r and that on y= —a/axlt is

Uy(—a/al/1, t) = —allicr, a minimum on either of these boundary lines would contra-

dict the boundary conditions there.
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mum must occur either on the line t = 0 or the line y=a/a112 of the

region R. Should the maximum occur on / = 0, say at y = v, Oá»?

£a/a112, then

wiy, t) ^ wiri, 0) = hia1'2*) - Aa^r, - U - (« + 7)

t% Aall2n + U + (t + y) - Aall2r, - U - (e + y)

go,
and

»(a»'»y, t) - Aal'2y - U - (t + 7) è 0

or

(18) uix, t) g Ax + U + ie + y).

Should the maximum of wiy, t) occur on y = a/a112, say at t = r>0,

then

wia/a112, t) è wiy, I),

forOg/^r, and

m(o, t) è «(*, <) — Aix — a)

or

m(z, /) g w(a, t) + A(x — a) = «(a, r) + Ax — AU.

Thus, if

(19) u(a, t) = U + (e + 7) + AC/,

then

n(x, t) = .4*4- ¿7 + (e + 7),

which is the result obtained in equation (18). We see from equations

(14), (18), and (19) that the solution u(x, t) remains in the «x-region

5 up to and including the time at which the control device (by rule

(1)) causes ux(a, t) to switch from the value A +<r to the value A —a.

Our second heat conduction problem is to investigate the solution

of the differential equation (7) for the initial condition (8) and the

boundary conditions

(20) «,(0, t) = A

and

(21) ux(a, t) = A - <x.

Again, let w(y, t)=u(all2y, t)—Aall2y—U—(t+y). Then, w(y, t)



19531 AN APPLICATION OF THE MAURO PICONE THEOREM 967

satisfies the differential equation of the Picone theorem in the region

R for the initial condition

(22) w(y, 0) = Ä(ax'*y) - yla1'2^ - U - (t + y)

and for the boundary conditions

(23) wy(0, /)=0

and

(24) w„(a/V2, t) = - ««V.

Since the boundary condition (23) does not allow a constant solu-

tion, by the Picone theorem the maximum of w(y, t) must occur on

the boundary of R. The boundary conditions (22) and (23) repre-

sent a heat conduction problem in which heat is being extracted from

one surface of a slab which is insulated on the other surface. Thus, the

maximum of w(y, t) must occur on f = 0,4 say at y = £, 0^£^a/aI/2,

and

w(y, t) g wit 0) = Â(y'2£) - Aa1*2!- - U - (t + y)

g Aa1'2^ + U + (e + y) - Aa1^ - U - (e + y)

^ 0

and

uW-y, t) - Aall2y - U - (« + y) £ 0

or

(25) u(x, t) =~Ax + U+ (e + y).

Now, let us re-examine the problem defined by equations (7), (8),

(20), and (21), but let

v(y, t) = mO*1'2)-, t) - Aal'2y - U + (« + y).

v(y, t) satisfies the differential equation of the Picone theorem in the

region R for the initial condition

(26) v(y, 0) = h(all2y) - Aa1/2y - U + (t + y)

and for the boundary conditions

(27) »»(0, /)=0

and

4 Maximum cannot occur on y = 0 as shown in footnote 3. Furthermore, the maxi-

mum of w(y, t) cannot occur on y = a/a'n, since it would contradict the boundary con-

dition (24) there.
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(28) Vyia/a1'2, t) = - a«V.

Again, this is a heat extraction problem and by the Picone theorem,

the minimum of viy, t) must lie either on the line / = 0 or the line

y = a/a112. Should the minimum of viy, t) lie on i = 0, say at y = v,

O^vSa/a1'1, then

viy, t) è v(y, 0) = hia^r,) - Aa1'2* - U + (e + 7)

è Aal'2r, + U - ie + y) - Aa"2* - U + (a + 7)

=■ 0

and

«(«»"y, t) - Aall*y - U + (e + 7) = 0

or

(29) »(*,*) £¿*+ff-(« + 7).

Should the minimum of v(y, t) lie on y = a/a112, say at / =r >0, then

via/a1'2, t) t% viy, t)

for Og/^T, and

«(a, r) á «(*, 0 — -4(* — a)

or

«(*, /) ^ «(a, t) + -4(a; — a) = «(a, t) + -4* — AC/.

Let

(30) «(a, r) = C/ + AC/ - (e + 7).

Then

uix, I) ^Ax+U-it + y),

which is the result obtained in equation (29). Now, we see from

equations (25), (29), and (30) that the solution uix, t) remains in the

wx-region S up to and including the time at which the control device

(by rule (2)) causes «i(a, t) to switch from the value A—ato the value

A+a.
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