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(c[g'(z)]* + zg'(z)) - Xzg'(z) - mg(z) - \zg'(z).

Then the lemma gives p^px. This completes the proof of the theorem.
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MEASURE EXTENSIONS AND THE MARTINGALE
CONVERGENCE THEOREM1

SHU-TEH CHEN MOY

1. Introduction. In 1940 J. L. Doob proved the following martin-

gale convergence theorem [3].*

Let {xn, yn, n ^ 1} be a martingale* with

sup [E[\ xn\ ]:•£ 1} < ».

Then {xn} converges with probability I to a random variable xx of

finite expectation.

In 1946 E. S. Andersen and B. Jessen proved some limit theorems

on derivatives of set functions [l]. One of the theorems is closely re-

lated to the martingale convergence theorem and is stated below.

Let JiCJiC • • • C7nC • • • be a nondecr easing sequence of Bor el

fields of subsets of a nonempty set ß. Let P be a probability measure de-

fined on the smallest Borel field yx containing all the yn's. Let <b be a

bounded, countably additive set function defined on yK. Let P„, <f>n be the

contractions of P, <b to yn respectively and suppose that each <bn is ab-

solutely continuous with respect to P„. Let xH be the derivative of (¡>n

relative to P„. Then [xn] converges, except on a set of P measure 0, to

Presented to the Society, April 25, 1953; received by the editors April 15, 1953.
1 This work was done while the author was Emmy Noether Fellow of Bryn Mawr

College. It is based on a portion of the doctoral thesis submitted to the University

of Michigan. The thesis was written under the supervision of Professor J. L. Doob of

the University of Illinois.

* Numbers in brackets refer to the bibliography.

3 For the definition and properties of a martingale see [2, Chap 7].
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the derivative of the P-continuous part of <p relative to P.

The above theorem will be designated as the A-J theorem through-

out this note.

Doob has pointed out that the xn's and J»'s in the A-J Theorem

form a martingale. In his discussion of the relation between his

martingale convergence theorem and the A-J theorem [2, appendix,

pp. 630-632 ] the following three conditions concerning a martingale

{xn, 7", «^ 1} are studied.

1. xn's are uniformly integrable.

2. There is a countably additive bounded set function <b, defined

on the smallest Borel field 7°° containing all the 7„'s, of which the

contraction <p„ to 7„ is absolutely continuous with respect to the con-

traction P„ of P to 7„ and for which xn is the derivative of <bn relative

to P„ for every n.

3. Sup {E[|*»|]:n£l}<oo.

He showed that 1 implies 2 and 2 implies 3; and the condition 2

together with the condition that <b be absolutely continuous with

respect to P on 7«, is equivalent to 1. He then demonstrated that 3 is

actually weaker than 2 by exhibiting an example of a martingale

which satisfies 3 but not 2. Thus he indicated that his martingale

convergence theorem is more general than the A-J theorem as far

as the convergence part is concerned. In this note I shall prove that

if the basic space 0 on which the random variables xn are defined is

the space of real sequences £ = {¿j„} and 7„ is the smallest Borel field

containing the sets of the form { {£B}: £i^ai, • • • , ^núot„} with

ai, • • • , ctn being any n real numbers, then 2 and 3 are equivalent.

This special case is of interest because by the representation theory

[2, pp. 12-15], for any martingale there is one of this type which

shares most of the relevant properties of the original martingale in-

cluding the convergence property. More precisely, for any martingale

{xn, 7m w = l} where xn's are defined on fl with elements w and

probability measure P, there is a mapping T on Í2 into the space of

sequences :

T(w) = {xi(u>), x2(u), • • • , xn(w), • ■ • }.

Let 7„' be the Borel field of sets in the sequence space generated by

the collection of sets of the form

where cti, at, • • • , a„ are n real numbers. Let 7' be the smallest Borel

field containing every 7„' and P' be the probability measure defined

on 7' by
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P'(A') = P(T~W).

If xa is the nth coordinate variable on ß', i.e., xñ is defined by

*«(Ö   =  ín,

then {xa , yñ , «è 1} is a martingale under the probability measure

P' and [x- } converges with probability 1 if and only if {xn\ con-

verges with probability 1. Hence the martingale convergence theorem

can be deduced from the A-J theorem by applying the theorem which

is to be proved.

2. The measure extension theorem. We shall consider a more

general case of a martingale with the index set to be any subset of

the real line. Let T be a set of real numbers. Let ß be the totality of

real-valued functions ¿r=£(i) defined on T.

yt is the Borel field generated by the collection of sets of the form

ft:«*) ^ «]
with s^t and a an arbitrary real number. Jw is the smallest Borel

field containing all 7('s. P is a probability measure on yx. Let

\xt, yt, tET} be a martingale under this probability measure and

<pt be a set function defined on yt by

(1) *i(A) = J XtdP.

Then <pt is bounded, countably additive, and absolutely continuous

with respect to P(, the contraction of P to J(. The derivative of 4>t

relative to P< is then xt. Furthermore, each <f>t is an extension of <p, if

s^t. Let <b be defined on Uígr^í by

(2) fa) = *,(A) if A E yt-

Notice that U<er7i is a field of subsets of ß and <f> is a finite, real-

valued, finitely additive set function on it.

Theorem. <b can be extended to be a countably additive set function on

yK if and only if sup{E[|x(| ]:<GP} < °°- The extension is then

bounded.

Before proving the above theorem we shall discuss some measure

preliminaries.

For a finite real-valued finitely additive set function <j> defined on

a field <tA of subsets of a set ß the positive part <b+ and the negative

part <t>~ of <b are defined by the following.
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4>+(A) = sup [4>(B):B CA,B GvA],

<b-(A) = - inf [<b(B):B C A, B £<vf].

Then </>+, <f>~ are non-negative, finitely additive set functions on zA

and

<b(A) - «+(,4) - <p-(A)

if either <£+(.4) or <b~(A) is finite. Furthermore, if <f> is countably addi-

tive, then d)+ and <p~ are also [4, pp. 21-22 ]. The following lemma con-

cerns a necessary and sufficient condition for the existence of a

countably additive extension of <b to the smallest Borel field 7 con-

taining zA.

Lemma 1. In order that there exists a countably additive extension of

<f> to the smallest Borel field 7 containing zA, it is necessary and sufficient

that the following two conditions be satisfied.

a. <b is countably additive on zA.

b. <j> is bounded on zA, i.e., there is a non-negative number K for

which \<f>(A)\ ^Kfor all AE*A.

Proof. 1. Necessity, a is obvious. For b, let <j> be a countably addi-

tive extension of <p on 7- Then «¿5 cannot take on both values + °o

and — oo. Let $+ and <?- be the positive part and the negative part

of # respectively, then # = #+ — $~ and there are two disjoint sets C

and D in 7 with CKJD = 0 such that

f+(A) = $(A r\ C),       $-(A) = - $(A C\ D)

for every set A £7 [&< PP- 121-123]. If <? does not take the value — »

then

$-(a) = - $(D) < ».

Hence for every set A £7

f~iA) ¿il«) = -$(D) < oo,

and

$+iA) g $+(0) = <?(C) = *(Q) - #(Z>) < oo

as <p~(ÇÏ)=<b(U)?* ± oo. Therefore both #+ and #- are bounded. The

same conclusion would be reached if # does not take the value + oo.

The boundedness of <p+ and <b~ follows from the inequalities:

<b+(A) S $+(A),       HA) ^ $~(A).

Since <b(A) =<p+(A) — <j>~(A) for every A(E.zA, <p is bounded.



906 SHU-TEH C. MOY [December

2. Sufficiency. If <p satisfies both a and b, then 4>+ and <j>~ are

finite and countably additive. Since <b+ and <f>~ are non-negative they

can be extended to be finite-valued countably additive measures

(¡>+, <f>- on y. For every A E*A

4?(A) - V(A) - *+(A) - <tr(A) = fa).

Therefore <¡>+—<p- is a countably additive extension of <p on J.

Using the preceding lemma we can now prove the theorem.

The <b defined by (1) and (2) is a finite-valued finitely additive set

function. The domain of definition of <j> is a field of sets. Suppose </>

can be extended to be a countably additive set function on y„ ; by the

preceding lemma there is a number K for which |#(A)| ^K for all

AGUter7«. Then

[i*,i] = f  xtdp'- r  xtdp
J [iläO] J [l|<0]

= *([*, à 0])-*([*i<0]) á2JC.

Conversely, suppose sup {E[[x,|] :i£r} =L< » ; then $ is bounded

for

| fa) | = 1   f *«áP   <P[|s,[] ÚL
I   •'A

if A E7«. To show that tj> is countably additive we shall do the follow-

ing.

For each tET define a non-negative, countably additive measure

Pt on yt by the equation

Pt(A) =  f    \xt\dP.
J Ai

If /áíigis; /, íi, hET; AEyt, then /^(A) á/i<,(A) ÚL for

J |*J¿P =  f \E[xti\yh]\dPi% f E[\xh\\ytl]dP
•* A •'A ** A

= J | «„I ¿Pá 7.

Let ¿> be the maximum value of the closure of P (¿> may be infinity).

Let txSt2^t3z% • • • be a sequence of elements of T with t$.tn for

every « and lim„,00/„ = 6. A set function p? is defined on yt by
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M((A) = lim/i,„(A).
n—»«

It is easy to see that ju* is independent of the particular sequence

{<„} chosen and is additive and finite-valued. It is also countably

additive and absolutely continuous with respect to Pt, because it is

the finite limit of a nondecreasing sequence of countably additive

measures [S]. Furthermore, if t<t'; t, t'ST; A£7<» then

Ht (A) = m*'(A).

Hence a set function /x.* can be defined on Utgr7« by

M*(A) = Mt(A)

if A£7«- Clearly, ju* is a non-negative finite-valued additive set func-

tion on Utgr7« and is countably additive on every 7«- Kolmogorov

has proved that such a set function is also countably additive on

UiGr7< [6].
For each A£U(er7ii

| *(A) | =S „*(A).

Hence the countable additivity of ß* implies the countable additivity

of (p. For, let AOA2I) ■ • • DA„D -be any decreasing sequence

of sets in UfgiT'' f°r which n"-iAn = null set, then limn-.ooM*(A.n) =0.

Hence lim„_0O<£(A„) =0 and therefore <b is countably additive. Q.E.D.
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