$$(c[g'(z)]^* + zg'(z)) - \lambda zg'(z) = mg(z) - \lambda zg'(z).$$

Then the lemma gives $p \leq p_1$. This completes the proof of the theorem.

REFERENCES

- 1. G. Ancochea, Sur les polynomes dont les zéros son symétriques par rapport à une circonférence, C. R. Acad. Sci. Paris vol. 221 (1945) pp. 13-15.
- 2. F. F. Bonsall and M. Marden, Zeros of self-inversive polynomials, Proc. Amer. Math. Soc. vol. 3 (1952) pp. 471-475.
- 3. A. Cohn, Über die Anzahl der Wurzeln einer algebraischen Gleichung in einer Kreise, Math. Zeit. vol. 14 (1922) pp. 110-148.

University of Madrid

MEASURE EXTENSIONS AND THE MARTINGALE CONVERGENCE THEOREM¹

SHU-TEH CHEN MOY

1. Introduction. In 1940 J. L. Doob proved the following martingale convergence theorem [3].²

Let $\{x_n, \mathcal{F}_n, n \geq 1\}$ be a martingale with

$$\sup \{E[|x_n|]: n \ge 1\} < \infty.$$

Then $\{x_n\}$ converges with probability 1 to a random variable x_{∞} of finite expectation.

In 1946 E. S. Andersen and B. Jessen proved some limit theorems on derivatives of set functions [1]. One of the theorems is closely related to the martingale convergence theorem and is stated below.

Let $\mathcal{J}_1 \subset \mathcal{J}_2 \subset \cdots \subset \mathcal{J}_n \subset \cdots$ be a nondecreasing sequence of Borel fields of subsets of a nonempty set Ω . Let P be a probability measure defined on the smallest Borel field \mathcal{J}_{∞} containing all the \mathcal{J}_n 's. Let φ be a bounded, countably additive set function defined on \mathcal{J}_{∞} . Let P_n , φ_n be the contractions of P, φ to \mathcal{J}_n respectively and suppose that each φ_n is absolutely continuous with respect to P_n . Let x_n be the derivative of φ_n relative to P_n . Then $\{x_n\}$ converges, except on a set of P measure 0, to

Presented to the Society, April 25, 1953; received by the editors April 15, 1953.

¹ This work was done while the author was Emmy Noether Fellow of Bryn Mawr College. It is based on a portion of the doctoral thesis submitted to the University of Michigan. The thesis was written under the supervision of Professor J. L. Doob of the University of Illinois.

² Numbers in brackets refer to the bibliography.

³ For the definition and properties of a martingale see [2, Chap 7].

the derivative of the P-continuous part of ϕ relative to P.

The above theorem will be designated as the A-J theorem throughout this note.

Doob has pointed out that the x_n 's and \mathcal{J}_n 's in the A-J Theorem form a martingale. In his discussion of the relation between his martingale convergence theorem and the A-J theorem [2, appendix, pp. 630-632] the following three conditions concerning a martingale $\{x_n, \mathcal{J}_n, n \ge 1\}$ are studied.

- 1. x_n 's are uniformly integrable.
- 2. There is a countably additive bounded set function ϕ , defined on the smallest Borel field \mathcal{J}_{∞} containing all the \mathcal{J}_n 's, of which the contraction ϕ_n to \mathcal{J}_n is absolutely continuous with respect to the contraction P_n of P to \mathcal{J}_n and for which x_n is the derivative of ϕ_n relative to P_n for every n.
 - 3. Sup $\{E[|x_n|]: n \ge 1\} < \infty$.

He showed that 1 implies 2 and 2 implies 3; and the condition 2 together with the condition that ϕ be absolutely continuous with respect to P on \mathcal{J}_{∞} is equivalent to 1. He then demonstrated that 3 is actually weaker than 2 by exhibiting an example of a martingale which satisfies 3 but not 2. Thus he indicated that his martingale convergence theorem is more general than the A-J theorem as far as the convergence part is concerned. In this note I shall prove that if the basic space Ω on which the random variables x_n are defined is the space of real sequences $\xi = \{\xi_n\}$ and \mathcal{J}_n is the smallest Borel field containing the sets of the form $\{\xi_n\}: \xi_1 \leq \alpha_1, \dots, \xi_n \leq \alpha_n\}$ with $\alpha_1, \dots, \alpha_n$ being any *n* real numbers, then 2 and 3 are equivalent. This special case is of interest because by the representation theory [2, pp. 12-15], for any martingale there is one of this type which shares most of the relevant properties of the original martingale including the convergence property. More precisely, for any martingale $\{x_n, \mathcal{F}_n, n \geq 1\}$ where x_n 's are defined on Ω with elements ω and probability measure P, there is a mapping T on Ω into the space of sequences:

$$T(\omega) = \{x_1(\omega), x_2(\omega), \cdots, x_n(\omega), \cdots\}.$$

Let \mathcal{J}_n' be the Borel field of sets in the sequence space generated by the collection of sets of the form

$$\{\xi:\xi_1\leq \alpha_1,\,\xi_2\leq \alpha_2,\,\cdots,\,\xi_n\leq \alpha_n\}$$

where $\alpha_1, \alpha_2, \dots, \alpha_n$ are *n* real numbers. Let \mathcal{J}' be the smallest Borel field containing every \mathcal{J}'_n and P' be the probability measure defined on \mathcal{J}' by

$$P'(\Lambda') = P(T^{-1}(\Lambda')).$$

If x_n' is the *n*th coordinate variable on Ω' , i.e., x_n' is defined by

$$x_n'(\xi) = \xi_n,$$

then $\{x_n', \mathcal{F}_n', n \ge 1\}$ is a martingale under the probability measure P' and $\{x_n'\}$ converges with probability 1 if and only if $\{x_n\}$ converges with probability 1. Hence the martingale convergence theorem can be deduced from the A-J theorem by applying the theorem which is to be proved.

2. The measure extension theorem. We shall consider a more general case of a martingale with the index set to be any subset of the real line. Let T be a set of real numbers. Let Ω be the totality of real-valued functions $\xi = \xi(t)$ defined on T.

 \mathcal{I}_t is the Borel field generated by the collection of sets of the form

$$[\xi:\xi(s)\leq \alpha]$$

with $s \le t$ and α an arbitrary real number. \mathcal{J}_{∞} is the smallest Borel field containing all \mathcal{J}_t 's. P is a probability measure on \mathcal{J}_{∞} . Let $\{x_t, \mathcal{J}_t, t \in T\}$ be a martingale under this probability measure and ϕ_t be a set function defined on \mathcal{J}_t by

(1)
$$\phi_i(\Lambda) = \int_{\Lambda} x_i dP.$$

Then ϕ_t is bounded, countably additive, and absolutely continuous with respect to P_t , the contraction of P to \mathcal{J}_t . The derivative of ϕ_t relative to P_t is then x_t . Furthermore, each ϕ_t is an extension of ϕ_t if $s \leq t$. Let ϕ be defined on $\bigcup_{t \in T} \mathcal{J}_t$ by

(2)
$$\phi(\Lambda) = \phi_{\iota}(\Lambda) \qquad \text{if } \Lambda \in \mathcal{I}_{\iota}.$$

Notice that $U_{t \in T} \mathcal{J}_{t}$ is a field of subsets of Ω and ϕ is a finite, real-valued, finitely additive set function on it.

THEOREM. ϕ can be extended to be a countably additive set function on \mathcal{J}_{∞} if and only if $\sup\{E[|x_t|]:t\in T\}<\infty$. The extension is then bounded.

Before proving the above theorem we shall discuss some measure preliminaries.

For a finite real-valued finitely additive set function ϕ defined on a field \mathcal{A} of subsets of a set Ω the positive part ϕ^+ and the negative part ϕ^- of ϕ are defined by the following.

$$\phi^{+}(A) = \sup \left[\phi(B) : B \subset A, B \in \mathcal{A} \right],$$

$$\phi^{-}(A) = -\inf \left[\phi(B) : B \subset A, B \in \mathcal{A} \right].$$

Then ϕ^+ , ϕ^- are non-negative, finitely additive set functions on $\mathcal A$ and

$$\phi(A) = \phi^{+}(A) - \phi^{-}(A)$$

if either $\phi^+(A)$ or $\phi^-(A)$ is finite. Furthermore, if ϕ is countably additive, then ϕ^+ and ϕ^- are also [4, pp. 21–22]. The following lemma concerns a necessary and sufficient condition for the existence of a countably additive extension of ϕ to the smallest Borel field \mathcal{F} containing \mathcal{A} .

LEMMA 1. In order that there exists a countably additive extension of ϕ to the smallest Borel field \mathcal{J} containing \mathcal{A} , it is necessary and sufficient that the following two conditions be satisfied.

a. ϕ is countably additive on \mathcal{A} .

b. ϕ is bounded on \mathcal{A} , i.e., there is a non-negative number K for which $|\phi(A)| \leq K$ for all $A \in \mathcal{A}$.

PROOF. 1. Necessity. a is obvious. For b, let $\overline{\phi}$ be a countably additive extension of ϕ on \mathfrak{I} . Then $\overline{\phi}$ cannot take on both values $+\infty$ and $-\infty$. Let $\overline{\phi}^+$ and $\overline{\phi}^-$ be the positive part and the negative part of $\overline{\phi}$ respectively, then $\overline{\phi} = \overline{\phi}^+ - \overline{\phi}^-$ and there are two disjoint sets C and D in $\overline{\gamma}$ with $C \cup D = \Omega$ such that

for every set $A \in \mathcal{F}$ [5, pp. 121–123]. If ϕ does not take the value $-\infty$ then

$$\bar{\phi}^-(\Omega) = -\bar{\phi}(D) < \infty$$
.

Hence for every set $A \in \mathcal{I}$

and

$$\bar{\phi}^+(A) \leq \bar{\phi}^+(\Omega) = \bar{\phi}(C) = \bar{\phi}(\Omega) - \bar{\phi}(D) < \infty$$

as $\phi(\Omega) = \phi(\Omega) \neq \pm \infty$. Therefore both ϕ^+ and ϕ^- are bounded. The same conclusion would be reached if ϕ does not take the value $+ \infty$. The boundedness of ϕ^+ and ϕ^- follows from the inequalities:

$$\phi^+(A) \leq \bar{\phi}^+(A), \quad \bar{\phi}(A) \leq \bar{\phi}^-(A).$$

Since $\phi(A) = \phi^+(A) - \phi^-(A)$ for every $A \in \mathcal{A}$, ϕ is bounded.

2. Sufficiency. If ϕ satisfies both a and b, then ϕ^+ and ϕ^- are finite and countably additive. Since ϕ^+ and ϕ^- are non-negative they can be extended to be finite-valued countably additive measures $\overline{\phi^+}$, $\overline{\phi^-}$ on \mathcal{I} . For every $A \in \mathcal{A}$

$$\overline{\phi^+}(A) - \overline{\phi^-}(A) = \phi^+(A) - \phi^-(A) = \phi(A).$$

Therefore $\phi^+ - \phi^-$ is a countably additive extension of ϕ on \mathcal{J} .

Using the preceding lemma we can now prove the theorem.

The ϕ defined by (1) and (2) is a finite-valued finitely additive set function. The domain of definition of ϕ is a field of sets. Suppose ϕ can be extended to be a countably additive set function on \mathcal{J}_{∞} ; by the preceding lemma there is a number K for which $|\phi(\Lambda)| \leq K$ for all $\Lambda \in U_{i \in T} \mathcal{J}_i$. Then

$$E[\mid x_t \mid] = \int_{\{x_t \ge 0\}} x_t dP' - \int_{\{x_t < 0\}} x_t dP$$
$$= \phi([x_t \ge 0]) - \phi([x_t < 0]) \le 2K.$$

Conversely, suppose $\sup\{E[|x_t|]:t\in T\}=L<\infty$; then ϕ is bounded for

$$|\phi(\Lambda)| = \left|\int_{\Lambda} x_{i} dP\right| \leq E[|x_{i}|] \leq L$$

if $\Lambda \in \mathcal{J}_{l}$. To show that ϕ is countably additive we shall do the following.

For each $t \in T$ define a non-negative, countably additive measure μ_t on \mathcal{J}_t by the equation

$$\mu_t(\Lambda) = \int_{\Lambda t} |x_t| dP.$$

If $t \leq t_1 \leq t_2$; t, t_1 , $t_2 \in T$; $\Lambda \in \mathcal{T}_t$, then $\mu_{t_1}(\Lambda) \leq \mu_{t_2}(\Lambda) \leq L$ for

$$\int_{\Lambda} |x_{t_1}| dP = \int_{\Lambda} |E[x_{t_2}| \mathcal{J}_{t_1}]| dP \leq \int_{\Lambda} E[|x_{t_2}|| \mathcal{J}_{t_1}] dP$$
$$= \int_{\Lambda} |x_{t_2}| dP \leq L.$$

Let b be the maximum value of the closure of T (b may be infinity). Let $t_1 \le t_2 \le t_3 \le \cdots$ be a sequence of elements of T with $t \le t_n$ for every n and $\lim_{n\to\infty} t_n = b$. A set function μ_t^* is defined on \mathcal{J}_t by

$$\mu_t^*(\Lambda) = \lim_{n\to\infty} \mu_{t_n}(\Lambda).$$

It is easy to see that μ_i^* is independent of the particular sequence $\{t_n\}$ chosen and is additive and finite-valued. It is also countably additive and absolutely continuous with respect to P_t , because it is the finite limit of a nondecreasing sequence of countably additive measures [5]. Furthermore, if t < t'; $t, t' \in T$; $h \in \mathcal{T}_t$, then

$$\mu_t^*(\Lambda) = \mu_{t'}^*(\Lambda).$$

Hence a set function μ^* can be defined on $\bigcup_{t \in T} \mathcal{J}_t$ by

$$\mu^*(\Lambda) = \mu_t^*(\Lambda)$$

if $\Lambda \in \mathcal{J}_t$. Clearly, μ^* is a non-negative finite-valued additive set function on $\bigcup_{t \in T} \mathcal{J}_t$ and is countably additive on every \mathcal{J}_t . Kolmogorov has proved that such a set function is also countably additive on $\bigcup_{t \in T} \mathcal{J}_t$ [6].

For each $\Lambda \in U_{\iota \in T} \mathcal{J}_{\iota}$,

$$|\phi(\Lambda)| \leq \mu^*(\Lambda).$$

Hence the countable additivity of μ^* implies the countable additivity of ϕ . For, let $\Lambda_1 \supset \Lambda_2 \supset \cdots \supset \Lambda_n \supset \cdots$ be any decreasing sequence of sets in $\bigcup_{t \in T} \mathcal{T}_t$ for which $\bigcap_{n=1}^{\infty} \Lambda_n = \text{null set}$, then $\lim_{n\to\infty} \mu^*(\Lambda_n) = 0$. Hence $\lim_{n\to\infty} \phi(\Lambda_n) = 0$ and therefore ϕ is countably additive. Q.E.D.

BIBLIOGRAPHY

- 1. E. S. Andersen and B. Jessen, Some limit theorems on integrals in an abstract set, Det Kgl. Videnskabernes Selskab, Matematisk-Fysiske Meddelelser vol. 22, No. 14, 1946.
 - 2. J. L. Doob, Stochastic processes, New York, Wiley.
- 3. ——, Regularity properties of certain families of chance variables, Trans. Amer. Math. Soc. vol. 47 (1940) pp. 485-486.
- 4. H. Hahn and A. Rosenthal, Set functions, University of New Mexico Press, 1948.
 - 5. P. Halmos, Measure theory, Von Nostrand, 1950.
- A. N. Kolmogorov, Foundations of the theory of probability, New York, Chelsea, 1950.

University of Michigan and University of Illinois