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1. Introduction. R. C. Bose and W. L. Stevens have shown inde-

pendently [l; 2] that the existence of a projective plane with »+1

points per line is equivalent to the existence of a completely orthog-

onal ra-by-w Latin square. In 1939, H. W. Norton [3] gave a statis-

tical enumeration of all the 7-by-7 Latin Squares. On the basis of

this enumeration, Bose and Nair [4] observed that the only com-

pletely orthogonal 7-by-7 squares are those associated with the

Desarguesian plane having eight points per line. In 1951, A. Sade

[7] noted an omission in Norton's list, although the omitted squares

do not contribute any new completely orthogonal systems. Strictly

speaking, no complete proof exists in the literature that the De-

sarguesian plane is the only projective plane with 8 points per line

(i.e., for the case ra = 7).

In the present paper, I apply the classical Kirkman Schoolgirl

Problem to prove directly that the diagonals of a complete quadri-

lateral are never concurrent when m = 7.2 In the paper that follows,

Professor Hall uses my result to give a direct geometric proof of the

theorem that any projective plane with 8 points per line is De-

sarguesian.

2. The impossibility of Fano's configuration. Suppose that Fano's

configuration (i.e., a complete quadrilateral with concurrent diag-

onals) is contained in a projective plane with 8 points per line. The

7 points and 7 lines of this configuration will be called "the original

points" and "the original lines." Besides the 7 original points, 35

new points lie on the 7 original lines. The whole plane has 1 + 7 + 72

= 57 points, so that exactly 15 points fail to lie on the original lines.

I shall call these 15 points "the extra points." Through an original

point P there are 3 original lines and 5 new lines. Each new line

through P meets 3 original lines at P, meets the other 4 original

lines at 4 distinct new points, and hence has exactly 3 extra points.

The 15 extra points can be regarded as the "schoolgirls" of the Kirk-
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1 Sponsored by the Office of Ordnance Research, United States Army.

1 The Kirkman Problem: How can fifteen girls go walking every day for seven

days, in five rows of three each, so that any two girls walk in the same row exactly

once during the seven days? See [5].
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man problem, the 5 new lines through P inducing 5 rows of 3 "school-

girls" each. The 7 original points induce 7 sets of 5 rows each, with

every row having exactly 3 "schoolgirls." Regard each of these 7 sets

as the Kirkman parade for one day. Such an interpretation will give

a solution of the Kirkman problem if the unique line, L, through two

distinct "extra points" is a new line through some original point. This

is the case because L meets the 7 original lines in at most 6 points.

Frank Nelson Cole has shown [6] that there are four types of

Kirkman solutions (in Cole's terminology, I—II, III—IV, V-VI, VII).

The first four "days" for each type are given by Columns ct-h as

follows:

Type (i) (HI)

Column a Column ß Column y Column 5

12      3 14      7 1      5    15 1      9    13
456 258 29    10 24    12
7      8     9 3    10    13 3     4    14 3      5    11

10    11    12 6    11    14 6     8    12 6      7    15
13 14 15    9 12 15    7 11 13    8 10 14

Type (ii) (III-IV)

12  3    14  7    1  5 15 1  9 10
456    258    29 13 24 12
7  8  9    3 10 13    3  4 11 3  5 14

10 11 12    6 11 14    6  7 12 6  8 15
13 14 15    9 12 15    8 10 14 7 11 13

Type (iii) (V-VI)

123 147 15 13 168
4     5      6 2      5    10 2     4 12 2    11    13
789 38    13 39 11 37    12

10    11    12 6    11    14 6      7 15 4    10    15
13    14    15 9    12    15 8    10 14 5      9    14

Type (iv) (VII)

123 147 16 15 159
456 25    10 29 11 24    14
7      8     9 3      8    13 3      7 14 3    10    15

10    11    12 6    11    14 4     8 10 6     8    12
13    14    15 9    12    15 5    12 13 7    11    13

Denote by A and B those original points which determine the lac-

ings of Columns a and ß respectively. (This means that the five new

lines through A have extra points 1, 2, 3; 4, 5, 6; 7, 8, 9; 10, 11, 12;

13, 14, 15; and the new lines through B have the extra points 1, 4, 7;
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6, 11, 14; 9, 12, 15; • • • etc.) The Fano Configuration is, by itself,
a Desarguesian plane and hence supports a collineation of itself

which carries any noncollinear point-triple onto any noncollinear

point-triple. Thus, if C is an arbitrary original point not on line-4P,

it will be enough to check that C determines the lacing of neither

Column y nor Column Ô.

Lemma. No generality is lost by assuming that Columns a, ß, y give

the lacings of extra points from noncollinear original points A, B, C.

Proof. If Columns a, ß, y are the lacings from collinear original

points, Columns a, ß, 5 arise from noncollinear original points. In

each of types (i), (ii), (iii), there is a permutation on the extra points

which interchanges Columns a, ß, and which interchanges Columns

y, 8. These permutations are:

Type (i) (1, 10) (2, 13) (4, 11) (5, 14) (7, 12) (8, 15).
Type (ii) (1, 13) (2, 10) (4, 14) (5, 11) (7, 15) (8, 12).
Type (iii) (2, 7) (3, 4) (5, 8) (6, 13) (9, 10) (11, 15).

If Columns a, ß, y of type (iv) come from collinear original points,

then Columns a, ß, 5 arise from noncollinear points. However,

Columns a, ß, 5 of type (iv) differ in notation only, from Columns

a, ß, y of type (iii) as can be seen by subjecting type (iv) to the

permutation (2, 4) (3, 7) (6, 10) (9, 13) (12, 14).

Theorem. Fano's configuration is impossible in a plane with 8

points per projective line.

Proof. Assume the existence of Fano's configuration with original

points A -G and original lines ABD, ACG, AEF, BEG, BCF, DFG,
CDE. The configuration determines a solution of the Kirkman prob-

lem, as explained above. By the lemma, we can assume that points

A, B, C, determine the lacings of Columns a, ß, y, respectively.

Each of the five new lines through A has three extra points

{l, 2, 3}, {4, 5, 6}, {7, 8, 9}, {l0, 11, 12}, {13, 14, 15}. The new
lines through A meet {C, D} in five distinct new points and meet

ID, F] in five distinct new points. The new lines through B meet

\C, D\ in five distinct new points and meet {D, F} in five distinct

new points. The new lines through C also meet {D, F} in five dis-

tinct points.

Assume, first, that the Kirkman solution is of Type (i). Then3 the

point {D, P}n{4, 5, 6} lies on line {9, 12, 15} or on line {3, 10, 13}.

' If k and m are lines, kC\m will denote the intersection of k and m.
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Hence line {2, 9, 10} cannot pass through {D, F}n{4, 5, 6}. Since,

however, {2, 9, 10} is a new line through C, {2, 9, 10} must meet

\D, F\ in a new point, and that new point is necessarily {D, F)

n{l3, 14, 15}.
The point [D, P}Pi(l, 2, 3} lies on one of the lines {6, 11, 14},

Í9, 12, 15}, so that (6, 8, 12} cannot pass through {D, F}(~\

{l, 2, 3}. Since {6, 8, 12} intersects {D, F] in some new point,

j6, 8, 12} passes through [D, F}n{l3, 14, 15}. Thus points Cand
¡D, F}n{l3, 14, 15} are joined by the distinct lines {2, 9, 10} and
{6, 8, 12}. This contradicts the fact that two distinct points de-

termine a unique line, and proves that the Kirkman solution is not of

type (i).

Similarly, in type (ii), line {6, 7, 12} cannot pass through {D, F\

n{l, 2, 3} so must contain {D, F}C\{l3, 14, 15}; while {3, 4, 11

cannot pass through {D, F}(~\{7, 8, 9} so must contain  {D, f\

DÍ13, 14, 15}. This is a contradiction, since C is joined to {D, F\

njl3, 14, 15} by both {6, 7, 12} and {3,4, 11}.
In type (iii), an identical argument shows that {l, 5, 13} and

{2, 4, 12} would both join C to {D, F}n{7, 8, 9}, proving (iii)

impossible.

Assume, finally, that the Fano configuration leads to a Kirkman

solution of type (iv). Then point {D, F}f\{l0, 11, 12} lies on

13, 8, 13} or {l, 4, 7}, whence line {3, 7, 14} cannot contain point

\D, F}r\{\Q, 11, 12}, so must contain point {D, F}n{4, 5, 6}.

This implies that point {D, F}n{4, 5, 6} lies on {9, 12, 15} rather

than on {3, 8, 13}, so that {6, 11, 14} passes through [C, D}

n{7, 8, 9}, forcing point {D, F}n{7, 8,9} to lie on {2,5, 10}. It
follows that {5, 12, 13} cannot meet {D, F} on {7, 8, 9}, and hence

must be the line joining C to point {D, F}i~\{l, 2, 3}. Since {4, 8, 10}

also  passes  through   C,  line   {4,  8,   10}   must  meet   {D,   F}   at

Í13,   14,   15}. This  is impossible,  because  the  point   {D, F)(~\
13, 14, 15} lies on {l, 4, 7} or {2, 5, 10}.
The proof of the theorem is now complete.

Bibliography

1. R. C. Bose, On the application of the properties of Galois fields to the problem of

construction of hyper-Graeco-Latin squares, Sankhyft, The Indian Journal of Mathe-

matics vol. 3 (1938) pp. 328-338.
2. W. L. Stevens, The completely orthogonalised Latin squares. Annals of Eugenics

vol. 9 (1939) pp. 82-93.
3. H. W. Norton, The 7X7 squares, Annals of Eugenics vol. 9 (1939) pp. 269-307.

4. R. C. Bose and K. R. Nair, On complete sets of Latin squares, Sankhyä vol. 5,

Part 4 (1941) pp. 361-382.



912 MARSHALL HALL [December

5. T. P. Kirkman, Schoolgirl problem, The Lady's and Gentleman's Diary (1950).

6. F. N. Cole, Kirkman parades, Bull. Amer. Math. Soc. vol. 28 (1922) pp. 435-

437.
7. A. Sade, An omission in Norton's list of 1X1 squares, Ann. Math. Statist, vol.

22 (1951) pp. 306-307.

Syracuse University

UNIQUENESS OF THE PROJECTIVE PLANE
WITH 57 POINTS

MARSHALL HALL, JR.

1. Introduction. In the preceding paper, W. A. Pierce has given a

new proof that Fano's configuration cannot exist in a projective plane

with 8 points per line. In this paper, I shall use his result to give a

proof of the theorem that any projective plane with 8 points per line

is Desarguesian. (For historical notes, see the preceding paper.)

2. The proof. If Ax, A2, A%, Ak form a quadrangle whose diagonal

points are not collinear, then we have the following configuration :

ft

La AXA2BXC„

L2: A^íBiPs

L3: AxAABiCx

Li~. A2A%B%C2

76: AtAiBtC*

Ls: AiAtB^t

Mx: BxBiCxC2

M2: BxB££i

Mz : B2BiPiCt
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