MINIMAL SETS OF VISIBILITY

F. A. VALENTINE

Let S be a set in an *n*-dimensional Euclidean space, E_n . The following concept was used by Horn and Valentine [2] in their study of L sets, and it provides the basis of this investigation.

DEFINITION 1. A set $V \subset S$ is a set of visibility in S if, given any point $p \in S$, there exists a point $q \in V$ such that the closed segment $pq \subset S$.

NOTATION. Given a point $x \in S$, let V(x) denote a continuum¹ of visibility in S which contains x. The notation $V_i(x)$ will also be used.

DEFINITION 2. The set V(x) is a minimal continuum of visibility in S relative to x if, for any other continuum of visibility $V_1(x)$, we have $V_1(x) \subset V(x)$.

A corresponding definition holds if we replace the word "continuum" by the words "compact convex set."

It is our purpose to investigate sets for which V(x) is unique for each $x \in S$. The most interesting result is contained in Theorem 2. The corresponding theory in which maximal convex sets are considered has been developed by Strauss and Valentine [3]. The two theories are decidedly different, and this difference is explained at the end of this article.

1. Minimal compact connected sets of visibility.

THEOREM 1. Let S be a closed set in E_n . Suppose each point $x \in S$ is contained in a unique minimal continuum of visibility V(x) in S. Then either S is convex or the product $\prod_{x \in S} V(x)$ is a nonempty continuum. (Both conclusions hold if and only if S is a single point.)

PROOF. In this and later proofs we denote the line joining x and y by L(x, y).

Suppose there exists two sets V(x) and V(y) such that $V(x) \cdot V(y) = 0$. By Definition 1 there exists a point $q \in V(x)$ such that $yq \subset S$. Let z be the point of $V(x) \cdot yq$ which is nearest to y. The uniqueness of V(z) implies that $V(z) \subset V(x)$ and that $V(z) \subset zy + V(y)$. Since $V(x) \cdot V(y) = 0$, the uniqueness of V(z) together with $V(x) \cdot yz = z$ imply that V(z) = z. Hence if $V(x) \cdot V(y) = 0$, S is starlike with respect to S.

Hence, if $V(x) \cdot V(y) = 0$, since V(y) is unique, we have V(y) = yu

Received by the editors February 24, 1953.

¹ A continuum is a compact connected set.

² A set S is starlike if there exists a point $x \in S$ such that V(x) = x.

 $\subset yz$, with $u \neq z$. Since from the uniqueness of V(u) we have $V(u) \subset uz$, $V(u) \subset uy$, then V(u) = u. If $S \subset L(y, z)$, then clearly S is convex. If $S \subset L(y, z)$, choose any point $w \in S - L(y, z)$. Since V(z) = z, V(u) = u, we have $V(w) \subset zw$, $V(w) \subset uw$. Hence V(w) = w. By the same token if $p \in L(y, z) \cdot S$, then $V(p) \subset pw$, $V(p) \subset pz$, whence V(p) = p. Thus for any point $a \in S$, we have V(a) = a. Hence, if $V(x) \cdot V(y) = 0$, the set S is convex.

Now, assume S is not convex. Hence, for any $x \in S$, $y \in S$, we must have $V(x) \cdot V(y) \neq 0$. Choose $z \in V(x) \cdot V(y)$. Since $V(z) \subset V(x)$, $V(z) \subset V(y)$, we have $V(z) \subset V(x) \cdot V(y)$. Since for any set V(a) we have $V(a) \cdot V(z) \neq 0$, it follows that $V(a) \cdot V(x) \cdot V(y) \neq 0$. By a simple induction it follows that every finite collection of the sets $\{V(x), x \in S\}$ has a nonempty intersection. Hence, by the usual compactness argument, we have $\prod_{x \in S} V(x) \neq 0$, if S is not convex.

Finally, to prove $\prod_{x \in S} V(x)$ is connected if S is not convex, we first prove $V(x) \cdot V(y)$ is connected. Suppose this were not so, and let K_1 and K_2 be two components of $V(x) \cdot V(y)$. Since K_1 and K_2 are each connected closed sets of visibility in S, each contains a minimal closed connected set of visibility. Hence, as proved above, we must have $K_1 \cdot K_2 \neq 0$ if S is not convex. The fact that $\prod_{x \in S} V(x)$ is connected follows by a simple induction together with the fact that if every finite subcollection of a collection of continua have a connected intersection, then they all have a connected intersection. This completes the proof of Theorem 1.

2. Minimal compact convex sets of visibility. In this section we confine ourselves to sets $S \subset E_2$.

LEMMA 1. Let S be a compact set in E_2 . Suppose each point $x \in S$ is contained in a unique minimal closed convex set of visibility V(x) in S. Then S is simply connected.³

PROOF. Suppose S is not simply-connected, and let K be a bounded component of the complement of S. Let H(K) be the convex hull of \overline{K} , where \overline{K} is the closure of K. Let B(H) denote the boundary of H(K). There exists a point $x \in B(H)$ such that a unique line of support L to H(K) at x exists. If $x \in \overline{K}$, let x = y. If $x \notin \overline{K}$, let L_1 be the line through x perpendicular to L, and let y be the point of $L_1 \cdot \overline{K}$ which is nearest to x. Since H(K) is bounded, there exists a unique line of support L^* to H(K) which is parallel to L, and distinct from L. Clearly since K is an open connected set, $y \cdot L^* = 0$. Let $L^* \cdot \overline{K} = G$.

³ A set in E₂ is simply-connected if each component of its complement is unbounded.

To prove that G is a single point, suppose there exist two points $u \in G$, $v \in G$. Let a be any point between u and v on L^* , and let L(a) be the line through a perpendicular to L^* . Let b be the point of $\overline{K} \cdot L(a)$ which is nearest to a. The line segment of S which joins b to a point of V(y) and the segment ab (degenerate or not) violates the connectedness of K, since u and v are limit points of K. Hence, $L^* \cdot \overline{K} = L^* \cdot B(H) = p$, a point of S. Moreover, the line L^* is not a unique line of support to H(K) at p, otherwise V(y) would not be visible from p.

Now, let L_i be a sequence of parallel lines between L and L^* such that $L_i \rightarrow L^*$ as $i \rightarrow \infty$. Choose $r_i \in L_i \cdot B(K)$, $s_i \in L_i \cdot B(K)$ such that the segment $r_i s_i$ contains the set $L_i \cdot \overline{K}$, and such that in terms of a direction on L, L^* , and L_i we have $r_i < s_i$ on L_i . Due to the position of the point y, defined above, the visibility of $V(r_i)$ and $V(s_i)$ implies that $V(r_i)$ and $V(s_i)$ must intersect L on opposite sides of x relative to L. In fact, $V(r_i) \cdot L$ and $V(s_i) \cdot L$ have the same order on L as r_i and s_i have on L_i . Since $L^* \cdot B(H) = p \in S$, it follows that $r_i \rightarrow p$, $s_i \rightarrow p$ as $i \to \infty$. Each of the collections $\{V(r_i)\}$ and $\{V(s_i)\}$ contains a convergent subsequence which converges to a closed convex set of visibility V_r and V_s respectively, with $p \in V_r$, $p \in V_s$. Let R_+ be the closed half-plane bounded by L^* which does not contain the point x. Since $V_r \cdot L \neq 0$, $V_s \cdot L \neq 0$, with x between $V_r \cdot L$ and $V_s \cdot L$, and since $p \in B(K)$, it follows that $V_r \cdot V_s \subset R_+$. On account of the uniqueness of V(p), we have $V(p) \subset V_r$, $V(p) \subset V_s$. Hence, $V(p) \subset V_r \cdot V_s \subset R_+$. However, due to the position of the point y, there exists no point $q \in V(p)$ such that $yq \subset S$ (K is an open connected set). This is a contradiction; hence, S is simply connected.

LEMMA 2. Assume the same hypotheses about S as in Lemma 1. Suppose there exists two points x and y in S such that $V(x) \cdot V(y) = 0$. Then S is starlike.

PROOF. A line L divides the plane into two closed half-planes, denoted by R_+ and R_- . A mutually separating line of support to V(x) and V(y) is one which is a line of support to each, and one for which either

$$V(x) \subset R_+, \quad V(y) \subset R_- \quad \text{or} \quad V(x) \subset R_-, \quad V(y) \subset R_+.$$

If V(x) and V(y) are not collinear, there exist two mutually separating lines of support to V(x) and V(y), denoted by L_1 and L_2 . If V(x) and V(y) are collinear, then $L_1 = L_2$. If $L_1 \neq L_2$, let $p = L_1 \cdot L_2$. If $L_1 = L_2$, choose $p \in L_1$ between x and y, with $p \in V(x)$, $p \in V(y)$. Let $r_i \in L_i \cdot V(x)$, $s_i \in L_i \cdot V(y)$ (i = 1, 2). Since V(y) is a minimal set of visibility,

there exist points $p_1 \in V(y)$, $p_2 \in V(y)$ such that $r_1p_1 \subset S$, $r_2p_2 \subset S$. The quadrilateral $r_1p_1p_2r_2$ (degenerate or nondegenerate) may be simple or not, but in any case its sides all belong to S. Since L_1 and L_2 are mutually separating lines of support to V(x) and V(y), it is easily seen that triangle $r_1r_2p \subset r_1p_1p_2r_2$. Since, by Lemma 1, S is simply-connected, we must have triangle $r_1r_2p \subset S$. Hence the convex hull $H[p+V(x)] \subset S$. In exactly the same manner, we have $H[p+V(y)] \subset S$. Since $V(p) \subset H[p+V(x)]$, $V(p) \subset H[p+V(y)]$, and since $H[p+V(x)] \cdot H[p+V(y)] = p$, the uniqueness of V(p) implies V(p) = p, so that S is starlike.

The following definition is due to Brunn [1].

DEFINITION 3. The set $K(S) \equiv \{x \in S, V(x) = x\}$ is called the Kerneigebiet of S. (The set S is starlike relative to each point of the Kerneigebiet.)

THEOREM 2. Let S be a compact set in E_2 , and suppose each point $x \in S$ is contained in a unique minimal closed convex set of visibility V(x) in S. Then either S is convex or S is starlike with respect to one and only one point of S. (In other words, the Kerneigebiet K(S) is either S or it is a single point of S.)

PROOF. Suppose S is not starlike. Then by Lemma 2, for each pair of points $x \in S$, $y \in S$ we have $V(x) \cdot V(y) \neq 0$. Then by exactly the same argument as given in Theorem 1, involving the finite intersection property and compactness, we must have $\prod_{x \in S} V(x) \neq 0$. But this is a contradiction, since $\prod_{x \in S} V(x) \subset K(S)$. Hence, S is starlike. Suppose there exist two distinct points $a \in K(S)$, $b \in K(S)$. If $S \subset L(a, b)$, then S is a line segment. If $z \in S - L(a, b)$, the uniqueness of V(z) implies $V(z) \subset za$, $V(z) \subset zb$. However, this implies V(z) = z so that $z \in K(S)$. Similarly, if $c \in [L(a, b) - a - b] \cdot S$, then $V(c) \subset cz$, $V(c) \subset ca$, so that V(c) = c. Hence, K(S) = S if $a \neq b$. Thus, either K(S) = S or K(S) is a single point of S. This completes the proof of Theorem 2.

There exist a variety of interesting examples of the set S in Theorem 2. For instance, the set consisting of two externally tangent circular disks is a nonconvex one containing interior points.

The corresponding theory for unbounded closed sets $S \subset E_2$ offers considerably more difficulty. Although I am able to establish a non-trivial generalization of Theorem 2 when at least one of the sets V(x) is bounded, the case when all the V(x) are unbounded remains unsettled.

3. Concluding remarks. In a previous paper [3] Straus and Valentine proved the following theorem.

"Let S be a closed connected set in a finite dimensional linear space, and let R_n be the subspace of minimal dimension which contains S. Then the set S is convex if and only if each point $x \in S$ is contained in a unique maximal convex subset of S of dimension greater than or equal to n-1."

Observe that the notion of *visibility* is not required in the above uniqueness requirement. This cannot be done for *minimal* convex sets of visibility since a minimal convex set of S containing a point x is always x. This is the reason the theory in this paper differs essentially from that used by Straus and Valentine.

The generalization of Theorem 2 to E_n (n>2) remains unsettled, and it appears to offer considerable difficulties. Finally, the converse of Theorem 2 is clearly false. For instance, a circular disk together with two outward normals (segments) is an obvious counterexample.

BIBLIOGRAPHY

- 1. H. Brunn, Über Kerneigebiete, Math. Ann. vol. 73 (1913) pp. 436-440.
- 2. A. Horn and F. A. Valentine, Some properties of L sets in the plane, Duke Math. J. vol. 16 (1949) pp. 131-140.
- 3. E. G. Straus and F. A. Valentine, A characterization of finite dimensional convex sets, Amer. J. Math. vol. 74 (1952) pp. 683-686.

University of California, Los Angeles