
MINIMAL SETS OF VISIBILITY

F. A. VALENTINE

Let 5 be a set in an «-dimensional Euclidean space, E„. The fol-

lowing concept was used by Horn and Valentine [2] in their study

of L sets, and it provides the basis of this investigation.

Definition 1. A set VES is a set of visibility in S if, given any

point p ES, there exists a point qEV such that the closed segment pqQS.

Notation. Given a point xES, let Vix) denote a continuum1 of

visibility in 5 which contains x. The notation V,ix) will also be used.

Definition 2. The set Vix) is a minimal continuum of visibility

in S relative to x if, for any other continuum of visibility 7i(x), we have

ViixXtVix).
A corresponding definition holds if we replace the word "con-

tinuum" by the words "compact convex set."

It is our purpose to investigate sets for which Vix) is unique for

each xES. The most interesting result is contained in Theorem 2.

The corresponding theory in which maximal convex sets are con-

sidered has been developed by Strauss and Valentine [3]. The two

theories are decidedly different, and this difference is explained at

the end of this article.

1. Minimal compact connected sets of visibility.

Theorem 1. Let S be a closed set in £„. Suppose each point xES is

contained in a unique minimal continuum of visibility Vix) in S.

Then either S is convex or the product H^s Vix) is a nonempty con-

tinuum. iBoth conclusions hold if and only if S is a single point.)

Proof. In this and later proofs we denote the line joining x and y

by Lix, y).
Suppose there exists two sets Vix) and Viy) such that Vix) ■ 7(y)

= 0. By Definition 1 there exists a point qE Vix) such that yqES.

Let z be the point of Vix) ■ yq which is nearest to y. The uniqueness

of Viz) implies that 7(z)C V(x) and that 7(z)Oy+ Viy). Since

Vix)- 7(y) = 0, the uniqueness of V(z) together with V(x)-yz = z

imply that V(z) =z. Hence if V(x) ■ Viy) =0, 5 is starlike2 with respect

to z.

Hence, if Vix)- 7(y)=0, since Viy) is unique, we have Viy)=yu
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1 A continuum is a compact connected set.

1 A set 5 is starlike if there exists a point xES such that V(x) =x.
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Cyz, with uj¿z. Since from the uniqueness of V(u) we have V(u)

duz, V(u)Quy, then V(u)=u. If S(ZL(y, z), then clearly 5 is con-

vex. If S(£L(y, z), choose any point w£S— L(y, z). Since V(z)=z,

V(u)=u, we have V(w)(Zzw, V(w)Quw. Hence V(w)—w. By the

same token if pÇE.L(y, z)S, then V(p)<Zpw, V(p)(Zpz, whence V(p)

= p. Thus for any point a (E S, we have V(a) =a. Hence, if V(x) ■ V(y)

= 0, the set S is convex.

Now, assume 5 is not convex. Hence, for any x(E.S, y£S, we must

have Vix)-Viy)*0. Choose zEVix)-V(y). Since Viz)CVix), Viz)
QViy), we have Viz)C.Vix)- V(y). Since for any set V(a) we have

V(a) ■ V(z) ,¿0, it follows that V(a) ■ V(x) ■ V(y) ̂ 0. By a simple induc-

tion it follows that every finite collection of the sets { V(x), x£S} has

a nonempty intersection. Hence, by the usual compactness argument,

we have Hxgs Vix) 9^0, if 5 is not convex.

Finally, to prove ITigs V(x) is connected if 5 is not convex, we

first prove Vix) • F(y) is connected. Suppose this were not so, and

let Ki and K2 be two components of Vix) ■ F(y). Since Ki and K2 are

each connected closed sets of visibility in S, each contains a minimal

closed connected set of visibility. Hence, as proved above, we must

have Ki-K29*0 if 5 is not convex. The fact that H^es V(x) is con-

nected follows by a simple induction together with the fact that if

every finite subcollection of a collection of continua have a con-

nected intersection, then they all have a connected intersection. This

completes the proof of Theorem 1.

2. Minimal compact convex sets of visibility. In this section we

confine ourselves to sets 5C^2.

Lemma 1. Let S be a compact set in E2. Suppose each point x£S is

contained in a unique minimal closed convex set of visibility Vix) in S.

Then S is simply connected*

Proof. Suppose 5 is not simply-connected, and let K be a bounded

component of the complement of 5. Let HiK) be the convex hull of

K, where ~R is the closure of K. Let BiH) denote the boundary of

HiK). There exists a point x£.BiH) such that a unique line of sup-

port L to HiK) at x exists. If *£Z, let x=y. If x^K, let Lx be the

line through x perpendicular to L, and let y be the point of LiK

which is nearest to x. Since HiK) is bounded, there exists a unique

line of support L* to HiK) which is parallel to L, and distinct from L.

Clearly since K is an open connected set, y-L* = 0. Let L*Ks*G.

' A set in Ei is simply-connected if each component of its complement is un-

bounded.
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To prove that G is a single point, suppose there exist two points

uEG, vEG. Let a be any point between u and v on L*, and let Lia)

be the line through a perpendicular to L*. Let b be the point of

K-Lia) which is nearest to a. The line segment of 5 which joins b

to a point of Viy) and the segment ab (degenerate or not) violates the

connectedness of K, since u and v are limit points of K. Hence,

L*~R=L*BiH)=p, a point of 5. Moreover, the line L* is not a

unique line of support to HiK) at p, otherwise Viy) would not be

visible from p.

Now, let L, be a sequence of parallel lines between L and L* such

that Li-*L* as t-*». Choose riELi-BiK), SiELiBiK) such that

the segment rtSi contains the set Li-K, and such that in terms of a

direction on L, L*, and L, we have r,<s< on L,. Due to the position

of the point y, defined above, the visibility of Virt) and VÍSj) implies

that Vir,) and 7(s,) must intersect L on opposite sides of x relative

to L. In fact, Vir{) L and 7(í¿) L have the same order on L as r<

and s¿ have on L,. Since L*BiH)=pES, it follows that r,—>£, s<—>/>

as t—» oo. Each of the collections { 7(r j)} and { Visi)} contains a con-

vergent subsequence which converges to a closed convex set of visi-

bility VT and 7, respectively, with pEVT,pE V,. Let P+ be the closed

half-plane bounded by L* which does not contain the point x. Since

Vr-L^O, V,-L?*0, with x between VTL and V,-L, and since

pEBiK), it follows that 7r- 7.CP+. On account of the uniqueness of

Vip), we have V(p)C 7r, 7(/>)C 7.. Hence, 7(¿>)C 7r- 7.CP-+. How-
ever, due to the position of the point y, there exists no point qE V{p)

such that yqES (isT is an open connected set). This is a contradic-

tion; hence, 5 is simply connected.

Lemma 2. Assume the same hypotheses about S as in Lemma 1. Sup-

pose there exists two points x and y in S such that Vix)- 7(y)=0.

Then S is starlike.

Proof. A line L divides the plane into two closed half-planes, de-

noted by R+ and P_. A mutually separating line of support to 7(x)

and Viy) is one which is a line of support to each, and one for which

either

7(*)CP+,    7(y)CP-   or   Vix) C R-,    Viy) C R+.

If Vix) and Viy) are not collinear, there exist two mutually separat-

ing lines of support to Vix) and Viy), denoted by Lx and L2. If Vix)

and Viy) are collinear, then Lx — L2. HLxí¿L2, let p = LxL2. ULX = L2,

choose pELx between x and y, with pEVix), pEViy). Let riELi
■ Vix), SiELi- Viy) (t = l, 2). Since Viy) is a minimal set of visibility,
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there exist points pi€E V(y), £2G V(y) such that ripiQS, r2p2C.S. The

quadrilateral rxpip2r2 (degenerate or nondegenerate) may be simple

or not, but in any case its sides all belong to S. Since Li and L2 are

mutually separating lines of support to Vix) and V(y), it is easily

seen that triangle rir2pQripip2r2. Since, by Lemma 1, 5 is simply-

connected, we must have triangle rir2p(ZS. Hence the convex hull

H[p+ V(x)]QS. In exactly the same manner, we have H[p+ V(y)]

CS. Since V(p)CH[p+V(x)], V(p)CH[p+V(y)], and since
H[p+V(x)]-H[p+V(y)]=p, the uniqueness of V(p) implies V(p)

= p, so that S is starlike.

The following definition is due to Brunn [l].

Definition 3. The set K(S) = {x^S, V(x)=x} is called the Ker-

neigebiet of S. (The set S is star like relative to each point of the Ker-

neigebiet.)

Theorem 2. Let S be a compact set in E2, and suppose each point

xÇzS is contained in a unique minimal closed convex set of visibility

V(x) in S. Then either S is convex or S is starlike with respect to one

and only one point of S. (In other words, the Kerneigebiet K(S) is either

S or it is a single point of S.)

Proof. Suppose 5 is not starlike. Then by Lemma 2, for each pair

of points xÇzS, yG5 we have V(x) ■ V(y)^a0. Then by exactly the

same argument as given in Theorem 1, involving the finite intersec-

tion property and compactness, we must have ITs^s V(x)j¿0. But

this is a contradiction, since JJ[»gs V(x)QK(S). Hence, 5 is star-

like. Suppose there exist two distinct points a(EK(S), b(EzK(S). If

SC_L(a, b), then 5 is a line segment. If z£S — L(a, b), the uniqueness

of V(z) implies V(z)Cza, V(z)C.zb. However, this implies V(z)=z

so that zGK(S). Similarly, if cG[L(a, b)-a-b]S, then V(c)Ccz,
V(c)Cca, so that V(c)=c. Hence, K(S) = S if a^b. Thus, either

K(S) = S or K(S) is a single point of 5. This completes the proof of

Theorem 2.

There exist a variety of interesting examples of the set S in Theo-

rem 2. For instance, the set consisting of two externally tangent circu-

lar disks is a nonconvex one containing interior points.

The corresponding theory for unbounded closed sets SQE2 offers

considerably more difficulty. Although I am able to establish a non-

trivial generalization of Theorem 2 when at least one of the sets V(x)

is bounded, the case when all the V(x) are unbounded remains

unsettled.

3. Concluding remarks. In a previous paper [3 ] Straus and Valen-

tine proved the following theorem.
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"Let 5 be a closed connected set in a finite dimensional linear

space, and let Rn be the subspace of minimal dimension which con-

tains 5. Then the set 5 is convex if and only if each point xES is

contained in a unique maximal convex subset of 5 of dimension

greater than or equal to n — 1."

Observe that the notion of visibility is not required in the above

uniqueness requirement. This cannot be done for minimal convex

sets of visibility since a minimal convex set of 5 containing a point

x is always x. This is the reason the theory in this paper differs essen-

tially from that used by Straus and Valentine.

The generalization of Theorem 2 to E„ (w>2) remains unsettled,

and it appears to offer considerable difficulties. Finally, the converse

of Theorem 2 is clearly false. For instance, a circular disk together

with two outward normals (segments) is an obvious counterexample.
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