
ON RESTRICTIONS OF OPERATORS

JOHN WERMER1

Introduction. Let r be a bounded linear operator on a Banach space

B and let t_1 exist. Consider a closed subspace C of B which is in-

variant under t, i.e. rCQC. The restriction of r to C is an operator

T on the Banach space C. Suppose now that t^CÇ^C, so that T has

no inverse. The class of operators T arising in this way has rather

special properties, which are in general quite different from those of t

on the whole space B. The purpose of this paper is to study this class

of restriction operators T.

Throughout we shall make one simplifying assumption on C,

namely, that C contains a single "generator" x, i.e. a vector x such

that the vectors Tnx, n = 0, 1, 2, • • • , are fundamental in C. It is

clear that if r~lCÇ+\C and x is a generator of C, then t-1:x;(£C.

In order that for a given operator r there may exist an invariant

subspace C which is not invariant under r-1, it is necessary that the

resolvent set of r have more than one component. For let x be in C

and take any functional \[/ with \¡/(C)=0. Then \p((\I—t)-1x)

= 2o (t"x, \b)/\"+1 = 0 for large |\| and hence for the entire re-

solvent set if this set is connected. In particular, ^(t-1x)=0; thus

\f/(C) = 0 implies^/(t~xx) =0 and so t^x^C. Hencet~1CQC.

In §1 we shall show how an operator T on C, obtained by restrict-

ing t to C, can be represented as an operator of multiplication by z

on a space of analytic functions. We shall also investigate the ring of

operators on C which commute with T. In §2 we shall show how these

general considerations specialise in the case of certain normal oper-

ators on Hubert space. In particular, we shall discuss some results

of Kolmogoroff on stationary sequences which correspond in our

problem to the case of a unitary operator r on Hubert space.

1. Throughout the following we mean by C a closed subspace in-

variant under t, with r~lCÇ+lC, and such that C has a generator x.

T denotes the restriction of r to C. By D we mean the component of

the resolvent set of r which includes the origin. Cn, n ^ 1, denotes the

range of T" and C°° the intersection of all the Cn. Each Cn is a closed

subspace of C, for let y* be in O, limjb=00 yic=y. We have yk = Tny¿

where y l G C. Hence r~ny = lim y i G C, since all y¿ G C, and so y G Cn.
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It follows that C°° is a closed subspace of C, since C°° is the intersec-

tion of all C".

Lemma 1. For each f in C there is a unique sequence of numbers

/„, w = 0, 1, • • • , such that for each N,f- £*_„ fnTnxECN+\

Proof. Consider the numerical functional ^0 which gives to each

vector in C of the form P(T)x, where Pis a polynomial, the value P(0).

Now xêJC1 since t~1xEC, and so x has a positive distance Ô from C1.

If P is any polynomial with P(0)^0, then ||P(7>/P(0)|| ^5, and

so |P(0)| ^||P(P)x||/5. Thus \¡/o is a bounded linear functional

on a dense subset of C and so may be extended to be defined

and continuous on all of C, assigning to each /in Ca value /o. If

now fEC, we have polynomials Pn with lim,,.,«, Pn(T)x=f. Hence

/-/ox = lim„=oo (P„(7>-P„(0)x). But each Pn(T)x-Pn(0)xECl

and so f—foxECl. Now the same argument we just used for any

f in C may be used for any g in Cl to give g—gxTx in C2 and so

for any/ in C, we have numbers /o,/i with f—fax—fxTxEC2. We can

clearly continue this process up to any n. It only remains to show

that if /- £rx fiTixEC» and /- ¿S"1 flT^EC", then /,-//,
i = 0, 1, • • • , n — 1. But/o=/o, for else xEC1, and in the same way

fi=fl and so on.

Theorem 1. Let ^ be any bounded linear functional on B which

annihilates C and with \¡/(t~1x) ?¿Q. Let Rz = (z—t)~1. If now fEC and

{fn}ô *s the sequence associated to f by Lemma 1, then

o (Rzx, 4>)

in some circle \z\ <r and the right-hand side is analytic in ©.

Proof. Let \(/ be as described and let P(T) be any polynomial in T.

Then Rz(P(z)—P(T)) is again a polynomial in T and so (RZ(P(T)

-P(z))x,ip)=Q. Hence

(2) (W)»,,)
(P-**, *)

and the denominator (P*k, ^0^0 except at isolated points in D,

since it is analytic in D and at 0 equals (t~1x, \p) ̂  0.

Let now/ be in C. Then we can find a sequence of polynomials P„

with/ = limn=oo Pn(T)x. Fix z0 in D. Choose now a simple closed con-

tour 7 contained with its interior in O and containing in its interior

the origin and the point z0, and such that (Rzx, ^5^0 on 7. Then
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there exists 5>0, M< «, with | (R¿c, \¡/) èô on y and ||l?J| ^M on

y. Hence, by (2), |P„(z)-Pm(z)| g(M/5) |PB(7>-Pm(7>|| j|^| for

all z on y, and so by the maximum principle for all z in the interior of y.

Also clearly limB,m_„ \\Pn(T)x-Pm(T)x\\ =0 and so lim„,ro_M \Pn(z)

—Pm(z)| =0, whence the sequence Pn(z) converges in the interior of

7 to a function F(z) analytic inside y. But now Pn(T)x converges to/

and so, by (2), F(z) = (Rtf,if')/(RzX,^) forz insidey. Thus we see that

(R„f,\¡/)/(Rtx, \¡/) is analytic at every point z0 in D. Also we see that

if Pn(T)x and Qn(T)x converge to/, then lim„=M Pn(z) = lim«.,« Qn(z)

for all z in D.

Let now y¡/n be the functional on C with ^„(/) =/B, for all / in C.

By the construction of the /„, ^» is bounded. Choose polynomials P*

with Pk(T)x converging to /. Then

/n = *.(/) = lim 4>n(Pk(T)x) = lim — PÍm)(0).

Set F(z) = (R,f, ^)/(R.x, ^). By the above, P(z)=linu_M Pk(z) uni-

formly in some circle \z\ <r. Hence/n = (l/«!)P(n)(0) and so F(z)

= 2Z" f"z"< as asserted.
Note. Formula (2) was suggested to the author by an interpola-

tion formula for polynomials given by Hall in [l, p. 32].

Theorem 2. The mapping: f into F(z) = Xo°/n2B is a homomorphism

of C onto a space J of functions analytic in O, and T is represented

on J as multiplication by z. The kernel of the homomorphism is C°°. If

/(«' converges to f in C, FM converges to F uniformly on every compact

subset of D.

Proof. It is clear that the mapping is linear. Since (Tf)n=fn-i, Tf

maps into zF(z). If for a certain/in C, F(z)=0, then/„ = 0 for each n

and so/GCB for every n. Thus/GC°°. Conversely, if /GC", each

/„ = 0 so F(z) vanishes identically. Finally, given z0 in D, we can find,

arguing as in the proof of Theorem 1, a circle \z — z0\ ^r,r>0, such that

for any/in C, \z — z0\ ^r, \ F(z)\ ^K\\f\\, where K depends only on r.

Hence convergence in norm in C implies uniform convergence on

compact sets in D.

Corollary. If h is any generator of C, then H(z) = J^ hnzn^0 in D.

Proof. Since A is a generator of C, there exist polynomials P„ with

Pn(T)h converging to x. Since the constant 1 is the image of x in J,

Theorem 2 gives that Pn(z)H(z) converges to 1 at every z in D.

Hence H(z) must ^ 0 for all z.

Definition. Sir denotes the ring of all bounded operators U on C

with UT = TU.
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Theorem 3. Suppose C — (0). Then each Ut¿0 in Sir is represented

on y as multiplication by an analytic function u(z) in J, u(z) ^0, and

so Sly is isomorphic to a ring of functions analytic in <D. The null-space

of each U in Sir consists of 0 alone. In particular, no nontrivial projec-

tion E, E2 = E, Et^I, and Et^O, can belong to Sir.

Proof. If U is in Sir, U^O, then Ux?*0 and so, since by hypothesis

C° = (0), we have a function u(z) in J, not identically zero, cor-

responding to Ux. Let now/ be arbitrary in C and choose P„ with

Pn(T)x converging to/. Then Pn(T)Ux= UPn(T)x converges to Uf.

But Pn(T) Ux corresponds in J to Pn(z)u(z). It follows by Theorem 2

that for each z in D, P„(z)u(z) converges to the value at z of the func-

tion in J which represents Uf. Finally, in the same way, we know that

Pn(z) converges to F(z) for all z in D, where F(z) is the function in y

corresponding to/.

Thus Uf maps into u(z)F(z) in J and so U is represented on y as

multiplication by u(z). If now Uf=0, for some/ in C, u(z)F(z) =0 for

all z in ©. Since u(z) is analytic in and not identically 0, u(z) has only

isolated zeros in <D and so F(z)=Q in D, whence/ = 0, since C°° = (0).

Thus the null-space of U consists of 0 alone. Finally, let E be in

Sir with E2 = E. If E^I, y = Ex — X5¿0 for some x. Then Ey = 0 and

so by the preceding, E = 0.

2. Let t be a normal operator on Hubert space 77 and let C be

any closed invariant subspace. It is not always true that the operator

T obtained by restricting r to C is normal. The author showed in

[2, Theorem 7] that this is true provided that the spectrum of r

lacks interior and does not separate the plane. We proceed now to

consider the following case: the spectrum of t lacks interior and

separates the plane into exactly two components.

Let T denote the restriction of r to C and let C have a single gen-

erator. We do not demand that C^j^C. Then under the preceding

assumption on the spectrum of r we have:

Theorem 4. Let C° denote the orthogonal complement of CK in C.

Then both C° and C°° are invariant under T. Restricted to the Hilbert

space C°°, T is a normal operator, while restricted to C°, T can be iso-

morphically represented as multiplication by z on a certain Hilbert space

y of analytic functions.

Proof. C°° is invariant under r and r-1. Let now r=f\dE\ be the

representation of t on the whole Hilbert space 77. Choose any ^ in

77 with (4>, Cx) =0 and any / in C°°. Then (\[/, rnf) =0 for ra = 0, ±1,

±2, • ■ • . Hence fd(E),f,\p)/(\ — z) =0 for all z not in the spectrum of

t. Since the spectrum lacks interior, it follows that d(E\f,yj/) =0asa
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measure. Thus (ip, T*f)=J\d(E\f, ^)=0. Hence r*/GC°° whenever

/GC°°, and so t, and hence T, is normal, restricted to C°°. Let now g

belong to C° and/ be in C°°. Then (Tg,f) = (g, t*/) =0, since T*f£C"°
and g is orthogonal to C°°. Thus C° is invariant under T.

Let now x be the generator of C and let x0 and xx be the com-

ponents of x in C° and C°° respectively. We claim that xo is a gen-

eratorfor C°. For if gGC°, (g, Tnx0) =0, then (P^g) =0,and so g = 0.

Suppose now gGC°, T~"gGC° for all n^O. Then T~ng£C, n^O,

and so gGC°°- Hence g = 0. Thus Theorem 2 gives us the representa-

tion of C° and T, as asserted.

Theorem 4 includes in particular the case when t is unitary.

Here we can give a simple concrete representation for J. Let H2

denote the space of functions analytic in \z\ <1 and with

supr<i /', [ F(rew)\ 2dd< «°. It is well known that a Taylor series

^2ô cnzn belongs to H2 if and only if ^¿° | cn\ 2< oo. We now have:

Theorem 5. Let r be unitary. Then the space J of Theorem 4 can be

taken to be H2, unless C°° = C, in which case J=(0).

In order to prove Theorem 5, it suffices to exhibit an ortho-

normal basis <bk in C° such that <p* = r*<p0, i»0, 1, 2, • • • . For then

every / in C° can be written in the form /= ^¿° cnTn<po, where

Ho* |cn|2<°°, and conversely, given {c„}0" with Ho* |c„|2<°°,

the vector Ho cnTn<b0(E.C0. Thus C° is isomorphic with H2 and clearly

this isomorphism carries T into multiplication by z, and so the

theorem is proved.

The problem of constructing such a basis arises in the study of the

representation of "stationary sequences" in Hubert space. A "sta-

tionary sequence" is a sequence of vectors [xn] "„ such that (xn, xm)

is a function oin — m. It is easily seen that a given sequence {x»}ü„

is stationary if and only if there exists a unitary operator r with

xn = Tnxo, » = 0, ±1, +2, • • • . In his paper, Stationary sequences in

Hilbert space [3] (cf. also [4]) Kolmogoroff states, without a com-

plete proof, a result of Wold on stationary sequences which yields a

basis {r*<p}o" for C°. We now give a complete argument:

Proof. If C" = C, then C° = (0) and so 7= (0). Otherwise, t~1x£C.

Hence there exist vectors x and \j/, X-LC and \f/ in C, with x^O, such

that T~1x = xJr4/- Setting <b=rx, we get that <j>£C and that the

vectors (l/H^I^P^, rc = 0, 1, • • • , form an orthonormal set. Let

Coi denote the subspace of C spanned by the Tncb. C^ÇZC0, since if

yGCx, (y, Tn(b) = (r~n~ly, x) =0 because T~n~ly£C and X-JLC, and so

C^J-C". We assert that C+ = C*, and for this it suffices to show that

the orthogonal complement of C^ÇC0".
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Let now E be the operator which projects C on the orthogonal

complement  of   C¿.   Then   ET=TE.   Also  since  t~1x = x+^,   Ex

— E(T\j/) — T(E\f/)EC1. Choose now Pn with P„(T)x converging to yp.

Then   7# = lim„_„o   EPn(T)x = Iim„_0O   Pn(T)ExECl   and    so   Ex

= T(E\p)EC2. Repeating the argument, we see that Eif/EC2, hence

that ExEC\ and so on. Thus ExEC" and so E(C)QCX. But E(C)

is the orthogonal complement of C*, and so we see that C+ = C°, as

claimed. By the above, this proves Theorem 5.

Corollary. If r is unitary and CK = (0), then Sir is isomorphic to

the ring of all functions analytic and bounded in \z\ <1.

Proof. The assertion follows from Theorems 3 and 5.

Kolmogoroff in [3] gave a necessary and sufficient condition that

Cw = (0). In terms of our definitions his result is as follows:

Theorem (Kolmogoroff): Let T=fl,ei'dEt be the spectral represen-

tation of the unitary operator r on the whole Hilbert space. If x is the

generator of C, then C°° = (0) if and only if the measure d(Etx, x), de-

fined on (—it, 7r), has a positive density p(t) such that d(Etx, x) =p(t)dt

and log p(t) is summable.

The operator To of multiplication by z in 772, which, as we have

seen, arises in the restriction of unitary operators, has been exten-

sively studied by Beurling in [S]. He determined all closed invariant

subspaces of To and gave a necessary and sufficient condition on a vec-

tor h in 772 in order that A be a generator of 772 under To- The neces-

sary condition of the corollary to our Theorem 2 is not sufficient.

The systematic study of restrictions of normal operators was be-

gun by Halmos in [6].
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