A CONDITION THAT $\lim_{n\to\infty} n^{-1} T^n = 0$

R. K. RITT

In this note we prove the following theorem:

Let T be a bounded linear transformation on a Banach space; let the spectrum of T be interior to the unit circle, with the possible exception z=1; further, suppose that there is an M>0 and an $\eta>0$ such that if z is in the resolvent set for T, $|z| \ge 1$, and $|z-1| \le \eta$, then $||(z-1)| \cdot (z-T)^{-1}|| \le M$. Then $\lim_{n\to\infty} n^{-1}T^n=0$.

As a consequence of a theorem of Dunford, if T obeys the above hypothesis, the sequence $f_n(T) = n^{-1} \sum_{r=1}^n T^r$ will then fail to converge to a projection if and only if z=1 is a nonisolated spectral point of T.

To prove the theorem, let $\epsilon > 0$ be chosen. Let $\eta' > 0$ such that the length of the arc intercepted on the unit circle by the circle of radius η' , center at z=1, is less than $2\pi M^{-1}\epsilon$. Let $\delta = \min (\eta, \eta')$ and Γ_{δ} the circle with radius δ . Γ_{δ} intersects the unit circle in two points z_0 , \bar{z}_0 . To be definite, let Im $(z_0) > 0$. Let Γ' be the arc of the unit circle which does not contain z=1. Let $\bar{\Gamma}_{\delta}$ be the arc of Γ_{δ} not interior to the unit circle. Let N be such that if n > N,

(1)
$$\left\| n^{-1} \int_{T'} z^n (z-T)^{-1} dz \right\| < 2\pi\epsilon,$$

(2)
$$\left\| n^{-1} \int_{\overline{\Gamma}^{k}} (z - T)^{-1} dz \right\| < 2\pi\epsilon,$$

(3)
$$n^{-1} < M^{-1}(e-1)^{-1}\epsilon.$$

Let n > N and, in what follows, hold n fixed. Let $\delta' = \min (n^{-1}, \delta)$, and $\Gamma_{\delta'}$ the circle of radius δ' . $\Gamma_{\delta'}$ intersects the unit circle in z' and \bar{z}' , Im (z') > 0. Let Γ_+ and Γ_- be respectively the arcs of the unit circle from z_0 to z' and \bar{z}_0 to \bar{z}' , and not exterior to $\Gamma_{\delta'}$. Let $\Gamma_{\delta'}$ be the arc of $\Gamma_{\delta'}$ not interior to the unit circle. Then,

(4)
$$\int_{\Gamma_{k}} n^{-1}z^{n}(z-T)^{-1}dz = \left(\int_{\Gamma_{k}} + \int_{\Gamma_{k}} + \int_{\Gamma_{k}} \right) n^{-1}z^{n}(z-T)^{-1}dz.$$

Now.

Presented to the Society, April 25, 1953; received by the editors March 30, 1953.

¹ N. Dunford, Spectral theory. I. Convergence to projections, Trans. Amer. Math. Soc. vol. 54 (1943) pp. 185-217.

² In all the circles we construct, the center will be at s=1.

(5)
$$\int_{\Gamma_{-}} n^{-1}z^{n}(z-T)^{-1}dz$$

$$= n^{-1} \sum_{j=0}^{n-1} \int_{\Gamma_{-}} z^{j}(z-1)(z-T)^{-1}dz + n^{-1} \int_{\Gamma_{-}} (z-T)^{-1}dz,$$

$$\int_{\Gamma_{+}} n^{-1}z^{n}(z-T)^{-1}dz$$

$$= n^{-1} \sum_{j=0}^{n-1} \int_{\Gamma_{+}} z^{j}(z-1)(z-T)^{-1}dz + n^{-1} \int_{\Gamma_{+}} (z-T)^{-1}dz,$$

$$\int_{\overline{\Gamma}_{\delta'}} n^{-1}z^{n}(z-T)^{-1}dz$$

$$= n^{-1} \sum_{j=1}^{n} C_{j,n} \int_{\overline{\Gamma}_{\delta'}} (z-1)^{j-1}(z-1)(z-T)^{-1}dz$$

$$+ n^{-1} \int_{\overline{\Gamma}_{\delta'}} (z-T)^{-1}dz.$$
(7)

The sum of the last terms in the right members of (5), (6), and (7) is $n^{-1}\int_{\overline{\Gamma}_{\delta}}(z-T)^{-1}dz$, and is less, in norm, than $2\pi\epsilon$ by (2).

$$\left\| n^{-1} \sum_{i=0}^{n-1} \int_{\Gamma_+} z^i (z-1) (z-T)^{-1} dz \right\| \leq M \text{ (length of } \Gamma_+) \leq 2\pi \epsilon.$$

A similar statement can be made for the first term of the right member of (5).

Finally,

$$\left\| n^{-1} \sum_{j=1}^{n} C_{j,n} \int_{\Gamma_{\delta'}} (z-1)^{j-1} (z-1) (z-T)^{-1} dz \right\|$$

$$\leq n^{-1} M 2\pi \sum_{j=1}^{n} C_{j,n} (\delta')^{j} = n^{-1} M 2\pi \left[(1+\delta')^{n} - 1 \right]$$

$$\leq n^{-1} M 2\pi \left[(1+n^{-1})^{n} - 1 \right] < n^{-1} M 2\pi (e-1) < 2\pi \epsilon \text{ by } (3).$$

But $||n^{-1}T^n|| = ||(2\pi i)^{-1}(\int_{\Gamma} + \int_{\Gamma_{\delta}})n^{-1}z^n(z-T)^{-1}dz||$, and using (1) and the inequalities obtained above, this is less than 5ϵ . The theorem is proved.

University of Michigan

³ Dunford, loc. cit.