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1. Introduction. A ring is defined to be right alternative in case

xy y—xyy = 0 is an identical relation in the ring. Right alternative

algebras were first studied by A. A. Albert, who showed that a semi-

simple, right alternative algebra over a field of characteristic 0 *$ alterna-

tive [l]. Another result concerns right alternative division rings,

which are of geometrical interest since they arise as coordinate sys-

tems of certain projective planes in which a configuration weaker

than Desargue's is assumed to hold. In this connection L. A. Skornia-

kov has shown that a right alternative division ring of characteristic

not 2 is alternative [2]. From the examples Albert presents in his paper

it is apparent that one must abandon conventional approaches, as for

instance the Peirce decomposition, in the study of a wider class of

right alternative rings. It seems that a closer examination of the right

alternative identity is thus called for.

In our treatment the associator plays a major role. We define the

associator ix, y, z) and commutator ix, y) by ix, y, z)=xyz—xyz

and ix, y) = xy—yx. In this notation the right alternative identity

becomes ix, y, y) = 0, which in turn implies

(1) (x, y,z)=- (x, z, y).

Characteristic different from 2 will be tacitly assumed from now on.

Let F be the free (non-associative) ring generated by Xi, • • • , xn.

Suppose R is any right alternative ring. We shall say the elements

/, u, v of R form an alternative triple in case the following two condi-

tions are satisfied: (i) There exist elements ct[xi, • • ■ , xn],

y[;ci, • • • , xn], b[xi, • ■ ■ , xn] in F and elements r%, • • • , r» in R

such that t = a[ri, ■ ■ ■ , r„], u=y[ru ■ ■■ , rn], v = 6[ri, • • • , rn];

(ii) li Si, ■ • • , s„ are any elements of an arbitrary alternative ring

and t'-a[si, ■ ■ ■ , s„], w'=y[si, • • • , s„], i/' = 5[si, • • • , j«], then

(/, «', v') =0. For our purposes n may be taken equal to 2. R will be

said to have property (P) in case /, u, v an alternative triple in R and

(t, u,v)2 = 0 imply (t, u, v) =0.

It follows that an alternative ring automatically has property (P).

Our main result states that the converse also holds. In other words a

right alternative ring is alternative if and only if it has property (P).

This theorem clearly generalizes Skorniakov's result.

For the sake of presenting a self-contained exposition, proofs of
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Lemmas 1, 2, and 4 are given, even though these facts are essentially

contained in Skorniakov's paper.

We use the symbols a, b, c, w, x, y, z to denote arbitrary elements of

R. In §3 we assume that R has property (P). It will be useful to know

that two elements of an alternative ring generate an associative sub-

ring.1

2. Elementary properties. In order to facilitate the calculations

we define the following functions:

fiw, x, y, z) = iwx, y, z) - (a», xy, z) + (w, x, yz) - wix, y, z)

- (w, x, y)z,

gix, w, y, z) = ix, w, yz) + ix, y, wz) - ix, w, z)y — ix, y, z)w,

hiw, x, y, z) = iwx, y, z) + (w, x, (y, z)) - wix, y, z) - (w, y, z)x.

We shall show presently that all three functions are identically zero.

In fact/(w, x, y, z) =0 holds in an arbitrary ring, as a direct conse-

quence of the definition of the associator. By forming fix, y, y, z)

-fix, z, y, y)+fix, y, z, y)=0 we obtain 2ix, y, yz) = 2ix, y, z)y.

This implies

(2) ix, y, yz) = ix, y, z)y.

In fix, z, y, y) =0 we make use of (2), so that

(3) ix, z, y2) = ix, yz + zy, y).

The identity gix, w, y, z)=0 follows from a linearization of (2),

obtained by replacing y with w+y. Since fiw, x, y, z)—giw, z, x, y)

= hiw, x, y, z), it is clear that hiw, x, y, z) =0. We are now ready to

prove a number of useful lemmas.

Lemma 1. iab-c)b = aibc-b).

Proof. We have iab-c)b = ia, b, c)b + ia-bc)b. According to (2),

(a, b, c)b = ia, b, be) = —(a, be, b) = — iabc)b+aibcb). By comparing

the two identities we prove the lemma.

Definition. For fixed elements a, b in R we define 5(a, ¿>) as the

set of all elements x in R which have the property ix, a, b) =xib, a).

It follows at once that 5(a, b) = Sib, a) and that x belongs to 5(a, b)

if and only if xa-b = xba. Moreover the elements of 5(a, b) form a

group under addition.

1 This is known in the literature as Artin's Theorem. For a proof see for instance

R. H. Brück and Erwin Kleinfeld, The structure of alternative division rings, Proc.

Amer. Math. Soc. vol. 2 (1951) p. 888, or Zorn's original proof the latter refers to.
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Lemma 2. If x belongs to both Sia, b) and 5(o, ba), then ¡c(o, a, b) = 0.

Proof. By Lemma 1, (xa-b)a = xiab-a). Since x belongs to Sia, b)

we have ixa■ b)a = ix■ ba)a, and because x belongs to Sia, ba), ix-ba)a

= xiaba). Comparison shows x(o, b, o) = 0.

Lemma 3. If both y and xy belong to Sia, b), then ix, a, b)y = 0.

Proof. By hypothesis we have the identities (¡cy, a, b) = —xy

(a, b) and xiy, a, b) = —x-yia, b). Substituting these in A(îc, y, a, b)

= 0 we obtain the lemma.

Lemma 4. For arbitrary x, ix, a, b) and ix, a, b)a are both contained in

Sia, b).

Proof. From (2) it follows that ix, a, ab2) = ix, a, b2)a, while from

(3), ix, a, b2)a = ix, ab, b)a+ix, a, b)b-a. Through comparison of

these two identities with gix, a, ab, b)=0 we are led to ix, a, b)ba

= ix, a, b) ab, which shows that ix, a, b) belongs to Sia, b).

From (2) we also obtained the identities ix, ba, ba2) = ix, ba, a)-ba

and ix, b, ba3) = ix, b, a*)b. These together with gix, ba, b, a2)=0

imply that ix, b, az)b — ix, ba, a2)6 = (x, ab, a) ba. Comparison of this

last identity with gix, b, a2, a)b = 0 proves that (jc, ab, a)-ba

= ix, b, a)a2b = ix, ab, a)ab, which is precisely what is needed to

assert that ix, a, b)a belongs to S (a, b). This completes the proof.

3. Main section. Henceforth we need to assume that our ring R

has property (P). We adopt the notation p = ia, a, b), q=ia, b). Our

aim is to produce situations in which property (P) can be applied.

Eventually we must establish p = 0. The next three lemmas provide

some of the essential tools toward this goal.

Lemma 5. (i) iq, a, b)=0, (ii) ((a, b), a, c) = —((a, c), a, b), (iii)

ixab-x-ba, a, b) = 0, (iv) ip2, a, q)=0 = ip2, a, ab) = ip2, a, ba).

Proof. From Lemma 4 we deduce that — iq, a, b)q=Hq, a, b), a, b),

so that iq, a, b)q is contained in Sia, b). Since iq2, a, b) is also contained

in Sia, b) we use hiq, q, a, b) = iq2, a, b) — qiq, a, b)~iq, a, b)q = 0 to

prove that qiq, a, b) is a member of Sia, b). We can now apply Lemma

3 to obtain iq, a, b)2 = 0. Property (P) may now be applied in the

obvious fashion and (i) follows. Part (ii) is just a linearization of (i),

obtained by replacing b with b+c. Now h{x, q, a, b)=0 together with

(i) implies that ixq, a, b) = ix, a, b)q, while, by Lemma 4, ix, a, b)q

= —Hx, a, b), a, b). This suffices for the proof of (iii). As a conse-

quence of Lemma 4, ipa, a, b) = — pa-q and ip, a, b)a= —pqa-. Com-

parison with hip, a, a, b)=0 proves that pqa—paq = p2. It is clear
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that p2 may also be expressed as p2=—p(a, b, a) = —p(aba)

+p(a-ba). Since Lemma 1 implies that p(aba) = (pa-b)a, and, by

Lemma 4, pab=pba, we obtain p2 — —(pba)a+p(aba). Both of

these expressions of p2, when combined with (iii), imply (iv). This

completes the proof of the lemma.

Lemma 6. Ifab — 0, then (b, a, b)=bab = 0 and (¿>a)2 = 0.

Proof. Let s = (b, a, b). Then 0 = s ab = sba. Consequently 0

= (sba)b = s(bab), using Lemma 1. Since s(b ■ ab) =0 we obtain s2 = 0,

so that 5 = 0. Also 0 = ((a, b), a, b) = — (ba, a, b) = (ba, b, a) = (bab)a

— (ba)2, with the aid of Lemma 5 (i). However it follows from

Lemma 1 that (bab)a = b(aba)=0. Therefore (ba)2 = 0.

Lemma 7. (i) 2(g, a, q)=qp-pq, (ii) (qp-pq)p = 0, (iii)

[p(P2+qp)]p = 0.

Proof. With the use of Lemma 5, part (i) and (ii), we can prove

that r = (g, a, q) = —(q, a, ba) = ((a, ba), a, b). Thus r belongs to

both S(a, b) and S(a, ba), hence by Lemma 2, rp = 0. From this we

see that (i) implies (ii). Since h(q, a, a, b)=0 we have iqa, a, b)+r

= qp, while it follows from h(a, q, a, b) =0 that iaq, a, b) =pq. Through

Lemma 5 (ii) we see that ((a, q), a, b) = —r. Combining the last three

identities one deduces that 2r = qp—pq, as was to be shown. Only part

(iii) remains to be proven. From hip, p, a, b)=0 we obtain ip2, a, b)

+(P, P, ?) =P(P, ö, b) + ip, a, b)p. Now ip, a, b) = -pq by Lemma 4,
so that ip2, a, b) = ip, q, p)—ppq—pqp = —pipq+qp). It will suf-

fice to show that ip2, a, b)p = 0. However combining hip2, a, a, b) = 0

with Lemma 5 (iv) we conclude that ip2a, a, b) =p', so that pl is in

S(a, b). At this point Lemma 3 can be applied to finish the proof.

From this point on we proceed directly with the proof of the main

result. From Lemma 7 (iii) we know that [p(pq+qp)]p = 0. Through

a combination of Lemma 6 and Lemma 7 (ii) we obtain that

[p(pq — qp)]p = 0. We conclude that

4) (p-pq)P = 0 = (pqp)p.

But then (p, pq, p) = — p(pq-p) = — p(qpp) because of Lemma 7 (ii).

On the other hand -_p(qp-p) = ip, qp, p), so that ip, p, ip, g))=0.

Since hip, p, p,q)=0 we can write ip2, p, q)=pip, p, q) + ip, p, q)p.

Clearly, by Lemma 4, ip2, p, q) and ip, p, q)p belong to Sip, q). This,

in combination with Lemma 3, implies ip, p, g)2 = 0, thus

(5) ip, p, q) " 0.

From (4), (5), and Lemma 7 (ii) we can obtain
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(6) p2qp = pqp2 = qp* = 0,

and in fact it is immaterial which way the products in (6) are asso-

ciated. Using hip2, a, a, b)=0 and Lemma 5 (iv) we deduce that

Sip2, a, a, b) = p3. Therefore hip2a, q, a,b) = 0 implies that ip2aq, a, b)

= ip2a, a, b)q = p3q. Inasmuch as qp3 = 0 from (6), Lemma 6 implies

ip3q)2 = 0. Since p3q is an associator of the above type we may use

property (P) and obtain p3q = 0. Because of (5) we can show that

P*q = 0. Hence p2ip2, a, b) =p2i~pPq~pqp) =0, using hip, p, a, b)

= 0. This allows us to utilize Lemma 3 and we infer that (/>*, a, b)2 = 0,

so that

(7) ip2, a, b) - 0.

From Lemma 7 (i) we get the identity qp = 2iq, a, q)+pq

= -2((a, q), a, b)~ip, a, 6) = (-2(a, q)-p, a, b). Thereby qp+pq

= ( — 2 (a, q) — 2p, a, b) and consequently pq+qp is contained in

Sia, b). Now from h(p, p, a, ¿>)=0, (7), and (5) it follows that 0

=p(p, a, b) + (p, a, b)p= -p(pq+qP), so that

(8) p(pq + qp) = 0.

Combining (8) with Lemma 3 we obtain (p, a, b)(pq+qp)=0 and

hence

(9) pq(pq + qp) = 0.

Also (qp)(pq+qp) = (q, p, qp+pq) = iq, P2, q), employing (8) and (3).

Since hiq, p2, a, b)-0, we have iqp2, a, b) + iq, p2, q)=0. Now

through Lemma 7 (ii) and (8) it can be seen that

(10) qp2 = pqp= - p2q,

and thus iq, p2, q) = —iqp2, a, b) = ip2q, a, b). Moreover from

hip2, q, a, b) =0, Lemma 5 (i), and (7) it can be proven that ip2q, a, b)

= 0. Therefore iqp)ipq+qp)=0. In conjunction with (9) this means

ipq+qp)2 = 0. Once again Property (P) may be invoked and we

obtain

(11) Pq+qp = o.

From (11) we are led to qp2 = p2q, which together with (10) implies

that p2q = pqp = qp2 = 0. However pq is a member of Sia, b) and so is

p2q. Again Lemma 3 can be used in order to prove that ip, a, b) pq

= — iPq)2 = 0, so that pq — Q. Hence with (11) and Lemma 4 we have

(12) ip, a,b) = 0 = pq = qp.

Since ip, a, b)=0, we can linearize and obtain ((a, a, c), a, b)
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= —((c, a, b), a, c). In particular ipa, a, b) = ((a, a, ab), a, b)

= — ip, a, ab) = — ip, a, b)a = 0. From h(p, a, a, b) =0 it now follows

that (p, a, q) =p2. Since (p, a, ab) = (p, a, b)a = 0 it must be that p2

= —(p, a, ba) and hence p2 is contained in S(a, ba). Also p2q = 0 and

(p2, a, b)=0, from (12) and (7) respectively, so that p2 is a member

of S(a, b) as well. Then by Lemma 2, p3 = 0. Thereby pi = 0, so that

p2 = 0 and then p = 0, using property (P) twice in a row. We may now

state:

Theorem. A right alternative ring of characteristic not 2 is alternative

if and only if it has property (P).

If one desires to assume a stronger hypothesis than property (P),

then our proof may be considerably shortened. Suppose we assume

that R has no nilpotent elements. In conjunction with Lemma 6 we

can then readily show that aba = 0 implies ab = ba = 0. Therefore

(12) follows directly from Lemma 7. In case R has no divisors of zero

even greater economy can be achieved.

Our main result has one drawback. Being dependent on calcula-

tions which involve associators, the final result involves associators

and this does not seem to connect in an obvious way with the usual

structure theory of rings. There is some hope however that both

theories have a common denominator, which will lead to further re-

sults on the subject.
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