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In [2] Albert proved that a finite-dimensional absolute-valued

algebra over the reals is necessarily alternative (and hence the reals,

complexes, quaternions, or Cayley numbers). In [3] he extended this

from finite-dimensional to algebraic algebras. Recently, Wright [9]

succeeded in removing the assumption that the algebra is algebraic.

Wright proceeds by proving that the norm springs from an inner

product, and then that the algebra is algebraic. Now if the norm \x\

comes from an inner product, then x\2 is a quadratic form in x, and

moreover the assumption | xy\ = | x \y\ means that it is a quadratic

form admitting composition. Thus Albert's finite-dimensional theo-

rem can be proved by combining Wright's result with Hurwitz's

classical theorem on quadratic forms admitting composition. The

main purpose of this paper is to make a similar method possible in

the infinite-dimensional case by providing a suitable generalization

of Hurwitz's theorem. The result is essentially that infinite-dimen-

sional quadratic forms cannot admit composition, except in the

rather trivial case of purely inseparable fields of characteristic two.

In the concluding moments of the proof we rely heavily on the

recent developments in the theory of alternative rings. Until then the

paper is quite self-contained and elementary, and the style of the

argument is very close to that of [l], [5], and [8].

Let A be a vector space over a field F. The function g(x) from A to

F is a quadratic form if

(1) g(\x) = \2g(x)

for \EF, xEA, and further the function/ defined by

(2) f(x, y) = g(x + y) - g(x) - g(y)

is bilinear in x and y. We say that g is nonsingular if g(x) =f(x, A)

= 0 implies x = 0. Ii the characteristic is not two, this is equivalent to

the nonsingularity of/, the latter meaning that f(x, A)=0 implies

x = 0. The form g is said to admit composition if there exists a bilinear

product xy from A XA to A with

(3) gixy) = gix)g(y).
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We can, and shall, regard the product xy as making A into an alge-

bra.

We propose to assume outright that A has a unit element. In the

finite-dimensional case, or in the infinite-dimensional case if A is a

division algebra, it is known that this entails no loss of generality.

For completeness we sketch this reduction. Take a£.4 with g(a)5¿0,

and set b = a2/gia); then by (1) we have g(b) = l. The mapping

Rb'. x-^xb preserves the form g and hence is a one-to-one map of A

into itself. In either of the two cases cited, Rb must then auto-

matically be onto. (In the general case, it seems unlikely that Rb

could fail to be onto for every possible choice of b, but I have been

unable to rule out this possibility.) A similar discussion applies to

Lb'. x-+bx. Now define a new product on A by xy = (xRt~1)(yLt~1).

We still have g(xy) =gix)giy), and relative to the new product b2 is

a two-sided unit element.

We now formulate and prove our theorem.

Theorem. Let A be an algebra with unit element over afield F. Sup-

pose that A carries a nonsingular quadratic form g satisfying (3) for all

x, y in A. Then: (a) A is alternative, (b) except for the case where A has

characteristic two and is a purely inseparable field over F, A is finite-

dimensional and of dimension 1, 2, 4, or 8, (c) A is either simple or the

direct sum of two copies of F, (d) gix) = x*x where x—>x* is an involution

of A.

Proof. We begin the proof by showing that g(l) = 1. Now g cannot

be identically 0, for then so is/by its definition (2), contradicting the

assumed nonsingularity of the form. Choose y so that g(y)9*0, and

set x=l in (3); the result is giy) = g(l)g(y), whence g(l) = l. As is

customary, we identify scalar multiples of the unit element with ele-

ments of F; with this convention we have g(X) =X2 for X in F. Since

g(x2)=g(x)2 by (3), we find in particular that the quadratic form

takes the same value at x2 and g(x).

We proceed to dispose of the case where / is identically 0 (which is

possible of course only for characteristic two). Then (2) tells us that

the mapping x—*g(x) is an additive homomorphism of A into F.

Since by (3) the mapping is always multiplicative, we find that it is

actually a ring homomorphism of A into F. Now the nonsingularity

of g (in the case/=0) is precisely equivalent to the fact that the kernel

of this homomorphism is 0. In other words, x—>g(x) is a ring iso-

morphism of A into F. At this point we already know that A is

an integral domain, and is in particular associative. For any x in A,

we saw in the preceding paragraph that g coincides at x2 and g(x).
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Hence g(x) =x2. This shows that A is a field; indeed for x?*0 the in-

verse of x is x/g(x). Moreover A is purely inseparable over F, with

the square of every element of A lying in F. This concludes the discus-

sion of the case/ssO. We remark that quadratic forms of this kind do

indeed exist in the infinite-dimensional case (as well as for finite

dimensions of the form 2") ; a suitable base field can be obtained by

adjoining an infinite number of indeterminates to any field of char-

acteristic two.

In the remainder of the proof we assume that/ is not identically 0,

from which we shall shortly deduce that / is actually nonsingular.

Our main tool is the result of linearizing (3) with the aid of (2). Thus

on setting x = a+b we get

(4) f(ay, by) - f(a, b)g(y),

and on further linearizing with respect to y :

(5) f(ac, bd) + f(ad, be) = f(a, b)f(c, d).

Suppose that/(y, A) =0 for y 9*0. Then, by the nonsingularity of g,

g(y)9*0. On setting o = l in (4) we deduce/(l, b)=0. This holds for

any b, so that/(l, A)=0. Now set a = c = l in (5). The conclusion is

that/(¿», d) = 0 for any b and d. This contradicts our assumption that

/ is not identically 0, and we have thereby proved that / is non-

singular.

Set b = 1 and c = ae in (5) :

(6) fia ae, d) + f(ad, ae) = f(a, \){(ae, d).

According to (4), or rather its symmetric analogue, f(ad, ae)

= g(a)f(d, e). We make this substitution in (6), and after reorganizing

we have /(z, d) = 0 where we have written

z = a-ae — /(l, a)ae + gia)e.

Since this is true for any d, we have z = 0. In particular the special

case e = 1 gives us

(7) a2 - fil, a)a + g(a) = 0.

Multiply (7) on the right by e, and compare the result with z = 0. We

find in this way that a-ae = a2e, the left half of the alternative law.

Similarly we prove the other half, and we now know that A is al-

ternative.

Define o*=/(l, a)—a. This is at any rate a linear mapping of

A into itself. By (2) we have/(l, 1) =g(2) —2g(l). Since g(l) = l and
g(2)=4, we find/(l, 1)=2. From this we compute that 1* = 1 and
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a** = a. Equation (7) asserts precisely that g(a) =a*a. The remaining

point we wish to verify is that * is an anti-automorphism: (ab)*

= b*a*. To do this we linearize (7), that is we replace a by a+b and

then cancel the terms which are quadratic in a and b. We find

(8) ob+ba- fia, í)b - fib, l)a + fia, b) = 0.

Next set a = c=\ in (5) and change notation, getting

(9) fil, ab) -+fia, b) = fil, a)fil, b).

By combining (8) and (9) we find precisely the equation iab)* = b*a*.

Let us summarize: we know that A is an alternative algebra with

unit element, and that it has an involution * such that a+a* and a*a

are in F for every a; indeed a*a coincides with the given quadratic

form gia). The next step in determining the structure of A will be

separated out as a lemma ; this lemma is presumably well known but

does not seem to be explicitly recorded anywhere.

Lemma. Let A be an algebra over afield F. Suppose that A has a unit

element, that it admits an involution * such that x+x* and x*x are in F

for every x, and that the quadratic form given by x*x is nonsingular.

Then: either A is simple, or it is the direct sum of two copies of F

iwith the involution interchanging the summands).

Proof of the Lemma. We first prove that A is *-simple in the sense

that it has no *-ideals other than 0 and A. Suppose that 19eA is a

two-sided ideal in A, satisfying 1 = 1*. We note that / cannot con-

tain any nonzero elements of F (for otherwise I=A). This shows that

a+a* =a*a* = 0 for any a in I. Let us write/for the bilinear form cor-

responding to x*x; thus fix, y)=x*y+y*x=iy*x)*+y*x. If x is in

/so is y*x, and it follows that fix, y) =0 for any y in A. By the non-

singularity of the quadratic form we have x = 0, and hence 1 = 0.

We have thus proved that A is *-simple. Next let / denote any

proper ideal in A. Then JC\J* and J+J* are both *-ideals; so we

must have J(~\J* = 0, J+J*=A, that is, A =J®J*. Since a+a* is in

F for every a, this decomposition is possible only if / is one-dimen-

sional, i.e., A is a direct sum of two copies of F. The alternative is

that A is actually simple, and this completes the proof of the lemma.

We are now ready to conclude the proof of the main theorem. The

hypotheses of the lemma are valid for our algebra A. Putting aside

the case where A is the direct sum of two copies of F, we may assume

that A is simple. Let Z denote its center; Z is a field over F. First

suppose that A is not associative. Then by the general theorem of

Kleinfeld   [7] on simple alternative rings, A is an 8-dimensional
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Cayley-Dickson algebra over Z. (In the special case at hand we could

also get what is needed out of [3] and [4]; if A has an idempotent,

[4] applies, while otherwise A is a division algebra and [3] applies.)

Suppose on the other hand that A is associative. Then the fact, given

by (7), that every element of A satisfies a quadratic equation is

known to imply finite-dimensionality of A over Z ; we can for example

cite Theorems 5 and 7 of [ó].

Once it is known that [A:Z] is finite, we are on familiar ground,

and elementary arguments show that A must also be finite-dimen-

sional over F, with dimension equal to 1, 2, 4, or 8. (Indeed Z must

coincide with F, except when A is a quadratic field over F.) We have

thereby completed the proof of the theorem.
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