
ON THE SOLUTIONS OF SECOND ORDER LINEAR
DIFFERENTIAL EQUATIONS

CHOY-TAK TAAM

1. Let P(x) and Q(x) be complex-valued Lebesgue-measurable

functions defined for all non-negative x, the functions 1/P(x) and

Q(x) being of the class L(0, R) for every positive R. A solution of the

differential equation

(1.1) (P(x)W')'+ Q(x)W = 0

is an absolutely continuous function W(x) such that P(x)W'(x) is

equal almost everywhere to an absolutely continuous function Wi(x),

say, and that

(1.2) Wl(x) +Q(x)W = 0

is satisfied for almost all x. In the sequel only those solutions which

are distinct from the trivial solution ( = 0) shall be considered.

On the positive ¡c-axis let / be an interval which need not be closed

or bounded. The equation (1.1) will be called disconjugate on I if

and only if no solution of (1.1) possesses more than one zero on /.

It is the purpose of this note to derive a general criterion (Theorem

1) for the differential equation (1.1) disconjugate on an interval and

from which to prove a comparison theorem (Theorem 2). These re-

sults generalize those obtained previously by the author for the case

P(x) = 1 [2, Theorems 1 and 9]. When P(x) = 1 and Q(x) is real, an

interesting discussion of disconjugate differential equations was given

by A. Wintner [4].

The method of proof of Theorem 1 is a modification of that em-

ployed in [2, Theorem l].

2. Write

(2.1) P(x) = pi(x) + ip2(x),       Q(x) - qi(x) + iq2(x),

where pi, p2, qi and q2 are real. We first prove the following general

criterion.

Theorem 1. Suppose that the following conditions are satisfied:

(1) m = m(x) is a real-valued function absolutely continuous on every

closed subinterval of I,

(2) for some real constants j and k, jpi-\-kp2 is positive on I and

l/(jpi+kp2) belongs to the class L on every closed subinterval of I,
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(3) mix) satisfies the inequality

(2.2) m' + m2/ijpx + kpt) ^ - ijqx + kq2)

almost everywhere on I.

Then (1.1) is disconjugate on I. Furthermore, if I is closed at least at

one end, there is a solution of (1.1) which does not vanish on I.

Proof. Suppose that the theorem is not true. Then there is a solu-

tion Wix) which has at least two zeros a and b,a<b, in 7. We shall

show that this leads to contradiction.

Let Wx be the absolutely continuous function which is equal to

PW almost everywhere on 7. Write

(2.3) W = u + iv,       Wx = ux + hi,

where u, v, ux, and vx are real. It is clear that

(2.4) «i = pxu' — p2v',       vx = p2u' + pxv'.

Separating the real and imaginary parts of (1.2), we get

(2.5) «i  = — qxu + q2v,       vl = — q2u — qxv.

The equalities in (2.4) and (2.5) hold almost everywhere on 7. Let

(2.6) L = jiuux + vvx) + kiuvx — uxv) — m(w2 + v2).

Differentiating (2.6) and simplifying the result with (2.4) and (2.5),
we have

(2 V = UPi + kpt)iu'2 + v'2) - 2miuu' + vv')

- im' + jqx + kq2)iu2 + v2)

almost everywhere on 7. Completing the squares, (2.7) yields

L' = UPi + Hi) [(«' - mu/(jpx + kp2))2

(2.8) +iv'-mv/ijpx+kpi))2]

- [m' + m2/ijpx + kp2) + jqx + kq2]iu2 + v2).

The first term on the right-hand side of (2.8) is positive almost

everywhere on [a, b], otherwise u and v would be solutions of the

differential equation

(2.9) y' = my/ijpx + kpt)

on [a, b], and, since u and v vanish at a, u and v must vanish identi-

cally on [a, b], but this is impossible owing to the fact that W^O.

Integrating both sides of (2.8) from a to & and using (2.2), we have

clearly
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(2.10) L(b)-L(a)>0.

Since L vanishes at a and b, we have contradiction. This proves that

W cannot possess two zeros on I and hence (1.1) is disconjugate on I.

If I is closed at the left end with end point a, then the argument

above shows that L(x) ^L(a) for all x on I. Since jpi+kp2 is positive,

j and k cannot both be zero. Suppose that j is not zero. Let W be a

solution with

W(a) = 1,        Wi(a) - [m(a) + \]/j.

For this solution it is easy to verify that L(a) = \. Hence L(x)èïl

for all x on I. Consequently, from (2.6), this solution does not vanish

on I. The cases that j = 0, k^O, and I is closed at the right end can

be proved similarly. This completes the proof of Theorem 1.

3. In this section, we shall prove a comparison theorem. Consider

another differential equation

(3.1) (r(x)y')' + f(x)y = 0,

where r and/are real-valued functions defined for all non-negative *,

r being positive, and 1/r and/ belonging to L(Q, R) for every positive

R. On the positive x-axis, let Io be an interval which is either closed

or open, and if open need not be bounded.

Theorem 2. Suppose that the following conditions are satisfied:

(1) (3.1) is disconjugate on Io,

(2) for some real constants j and k, the inequalities jpi-\-kp2^r,

jqi-\-kq2^f hold almost everywhere on Io-

Then (1.1) is disconjugate on Io. Furthermore, if I0 is closed, there is a

solution of (1.1) which does not vanish on Io-

Proof. It is known that if (3.1) is disconjugate on Io, there exists

a real-valued function m(x) which is absolutely continuous on every

closed subinterval of Ia and satisfying the inequality

(3.2) m' + m2/r^ - f

almost everywhere on 70 [3, Theorem l]. From (3.2) and condition

(2) of the theorem, it is clear that

(3.3) m' + m2/(jpi + kp2) g - (/<?, + kq2)

holds amost everywhere on 70. The theorem then follows from Theo-

rem 1.

4. In the following theorem, we consider the differential equation
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(4.1) iiipx + kpjy')' + ijpx + kpt)~Ki2y = 0,

where

(4.2) Gix) = 2 f * Oil + kq2 + g)dx + A.
J a

Theorem 3. Suppose that the following conditions are satisfied:

(1) j, k and A are real constants,

(2) g=gix) is real-valued, non-negative on [a, b] and belongs to

Lia, b),
(3) jpi+kpt is positive on [a, b] and (jpx+kp2)~l belongs to Lia, b),

(4) (4.1) is disconjugate on [a, b].

Then (1.1) is disconjugate on [a, b].

Proof. Since (4.1) is disconjugate on [a, b], according to [3,

Theorem l], there exists a real-valued function nix) absolutely con-

tinuous on [a, b] and satisfying

(4.3) n' + n2/(jpx + kp2) ¿ - G2/(jpx + kp2)

almost everywhere on [a, b]. Let m — (n—G)/2. Using (4.2) and (4.3),

it is easy to verify that m satisfies (2.2) almost everywhere on [a, b].

The theorem then follows from Theorem 1.

Theorem 3 can be easily modified to apply to an open interval,

bounded or unbounded.

Theorem 3 is a generalization of a theorem due to P. Hartman [l].
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