ON THE SOLUTIONS OF SECOND ORDER LINEAR
DIFFERENTIAL EQUATIONS

CHOY-TAK TAAM

1. Let P(x) and Q(x) be complex-valued Lebesgue-measurable
functions defined for all non-negative x, the functions 1/P(x) and
Q(x) being of the class L(0, R) for every positive R. A solution of the
differential equation

(1.1) (P()W')" + Q(x)W =0

is an absolutely continuous function W(x) such that P(x) W’(x) is
equal almost everywhere to an absolutely continuous function Wi(x),
say, and that

(1.2) Wi(x) +QxW =0

is satisfied for almost all x. In the sequel only those solutions which
are distinct from the trivial solution (=0) shall be considered.

On the positive x-axis let I be an interval which need not be closed
or bounded. The equation (1.1) will be called disconjugate on I if
and only if no solution of (1.1) possesses more than one zero on I.

It is the purpose of this note to derive a general criterion (Theorem
1) for the differential equation (1.1) disconjugate on an interval and
from which to prove a comparison theorem (Theorem 2). These re-
sults generalize those obtained previously by the author for the case
P(x)=1 [2, Theorems 1 and 9]. When P(x) =1 and Q(x) is real, an
interesting discussion of disconjugate differential equations was given
by A. Wintner [4].

The method of proof of Theorem 1 is a modification of that em-
ployed in [2, Theorem 1].

2. Write
(2.1) P(x) = pi(x) + ipa(x),  Q(x) = qi(x) + igs(2),

where p1, p;, 1 and g: are real. We first prove the following general
criterion.

THEOREM 1. Suppose that the following conditions are satisfied:

(1) m=m(x) is a real-valued function absolutely continuous on every
closed subinterval of I,

(2) for some real constants j and k, jp1+kps is positive on I and
1/(Gpor+kps) belongs to the class L on every closed subinterval of I,
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(3) m(x) satisfies the inequality
(2.2) m' + m*/(jpr + kps) S — (ju + kg2

almost everywhere on I.
Then (1.1) is disconjugate on I. Furthermore, if I is closed at least at
one end, there is a solution of (1.1) which does not vanish on I.

ProoF. Suppose that the theorem is not true. Then there is a solu-
tion W(x) which has at least two zerosa and b, a <b, in I. We shall
show that this leads to contradiction.

Let W, be the absolutely continuous function which is equal to
PW’ almost everywhere on I. Write

2.3) W =u+ i, Wi = u; 4+ ivy,

where %, v, %, and v, are real. It is clear that

(2.4) w1 = pu’ — pov', v = pu + piv'.

Separating the real and imaginary parts of (1.2), we get

(2.5) ul = —qu+qw, v = — qu — qu.

The equalities in (2.4) and (2.5) hold almost everywhere on I. Let
(2.6) L = j(uu; + vvy) + k(uvy — upo) — m(u? + v2).

Differentiating (2.6) and simplifying the result with (2.4) and (2.5),
we have

2.7) L' = (jpr + ko) (W + ') — 2m(uss’ + vv')

— (m' + jg1 + kg2)(u® + v?)
almost everywhere on I. Completing the squares, (2.7) yields
L' = (jpr + kpo) (W — mu/(jpr + kpo))?
(2.8) + (o' — mv/(jpr + kp2))?]
= [+ m¥/(ips + kpa) + jgr + ka](w? + 02).

The first term on the right-hand side of (2.8) is positive almost
everywhere on [a, b], otherwise % and v would be solutions of the
differential equation

(2.9) y' = my/(jpr + kps)

on [a, b], and, since % and v vanish at a, # and v must vanish identi-
cally on [a, 5], but this is impossible owing to the fact that W#0.
Integrating both sides of (2.8) from @ to b and using (2.2), we have
clearly
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(2.10) L(d) — L(a) > 0.

Since L vanishes at a and b, we have contradiction. This proves that
W cannot possess two zeros on I and hence (1.1) is disconjugate on I.

If I is closed at the left end with end point @, then the argument
above shows that L(x) 2 L(a) for all x on I. Since jp,+kps is positive,
j and % cannot both be zero. Suppose that j is not zero. Let W be-a
solution with

W) =1, Wia) = [m(a) + 1]/j.

For this solution it is easy to verify that L(e)=1. Hence L(x)21
for all x on I. Consequently, from (2.6), this solution does not vanish
on I. The cases that j=0, 70, and I is closed at the right end can
be proved similarly. This completes the proof of Theorem 1.

3. In this section, we shall prove a comparison theorem. Consider
another differential equation

3.1) (r(=)y") + f(®)y = 0,

where r and f are real-valued functions defined for all non-negative x,
r being positive, and 1/r and f belonging to L(0, R) for every positive
R. On the positive x-axis, let I be an interval which is either closed
or open, and if open need not be bounded.

THEOREM 2. Suppose that the following conditions are satisfied:

(1) (3.1) s disconjugate on I,,

(2) for some real constants j and k, the inequalities jpr+kps2r,
jqr+kqg: =f hold almost everywhere on I,.

Then (1.1) is disconjugate on I,. Furthermore, if I, is closed, there is a
solution of (1.1) which does not vanish on I,.

Proor. It is known that if (3.1) is disconjugate on I,, there exists
a real-valued function m(x) which is absolutely continuous on every
closed subinterval of I, and satisfying the inequality

(3.2) m +m¥rs — f

almost everywhere on I, [3, Theorem 1]. From (3.2) and condition
(2) of the theorem, it is clear that

(3.3 m' + m*/(jp1 + kps) S — (jgr + kg2)

holds amost everywhere on I,. The theorem then follows from Theo-
rem 1.

4. In the following theorem, we consider the differential equation
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(4.1) (Gp1 + kpa)y') + (o1 + kpa)~'G?y = 0,
where
(4.2) 6t =2 [ "Gou + kau + dn + 4.

THEOREM 3. Suppose that the following conditions are satisfied:

(1) j, k and A are real constants,

(2) g=g(x) s real-valued, non-negative on [a, b] and belongs to
L(a, b),

(3) jp1+Ekps is positive on [a, b] and (jpr+kps)—! belongs to L(a, b),

(4) (4.1) s disconjugate on [a, b].

Then (1.1) is disconjugate on [a, b].

Proor. Since (4.1) is disconjugate on [a, b], according to [3,
Theorem 1], there exists a real-valued function #(x) absolutely con-
tinuous on [a, b] and satisfying

(4.3) n' + n*/(jpr + kps) = — G*/(jpr + kpe)

almost everywhere on [a, b]. Let m = (n —G)/2. Using (4.2) and (4.3),
it is easy to verify that m satisfies (2.2) almost everywhere on [a, b].
The theorem then follows from Theorem 1.

Theorem 3 can be easily modified to apply to an open interval,
bounded or unbounded.

Theorem 3 is a generalization of a theorem due to P. Hartman[1].
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