
ON AN OPEN QUESTION CONCERNING FIXED POINTS

WAYMAN l. STROTHER1

A space X is said to have the f.p.p. (fixed point property) if every

continuous function / from X to X has a fixed point. Whether if X

and Y have the f.p.p. then XX Y has the f.p.p. is an open question.

A space X is said to have the F.p.p. (fixed point property for multi-

valued functions) if every continuous multi-valued function F from

X to X has a fixed point, i.e., a point x such that xEFix). Interest in

fixed points for multi-valued functions leads one to question under

what conditions on the spaces X and Y and on the multi-valued func-

tion F on X to Y there will exist a continuous trace/ of F, that is, a

continuous function / on X to Y such that fix) E Fix) for all *. For

some specific multi-valued functions F it is possible to produce a

continuous trace. It is by use of these traces that most of the fixed

point theorems in the literature for multi-valued functions are proved.

In fact the open question mentioned above (which is concerned only

with single-valued functions) can be answered if one can produce

continuous traces of two particular multi-valued functions. This

paper proves some fixed point theorems by producing continuous

traces, shows that a continuous multi-valued function need not have

a continuous trace, and gives an example which indicates that a gen-

eral theorem on the existence of a continuous trace is not likely to be

established without strong conditions on F regardless of what condi-

tions are placed on X and Y. This example answers in the negative

the generalization of the above open question to the multi-valued

case, exhibits a continuous multi-valued function which has no con-

tinuous trace, shows that the general Tychonoff cube does not have

the F.p.p., and shows that a space with the f.p.p. need not have the

F.p.p.
Notation. By {*<>}—>x0 we denote a sequence of points indexed

by a directed set A and converging to Xo. The directing relation in A

will be denoted by *.
Definition 1. Continuous. A multi-valued function on a space X

to a space Y is said to be continuous at x0 if {xa} —>xa implies that

Fixo) = cofinal limit {F(x0)} = residual limit {P(xa)}. Pis said to be
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continuous if it is continuous at every x in X.

For the details of how this definition of continuity is related to the

definitions used elsewhere in the literature see [l]. This definition is

strong enough, however, to insure that the example is valid for func-

tions continuous under the definitions used by Ratner [2], Wallace

[3], Eilenberg and Montgomery [4], Kakutani [S], Banach and

Mazur [6], and Michael [7].

Directly from the definition of trace we establish the following

Lemma 1. Letf be a trace of a multi-valued function F on X to Y and

let x be a fixed point off. Then x is a fixed point of F.

From Lemma 1 it is clear that a sufficient condition for a continu-

ous multi-valued function F to have a fixed point is that F have a

continuous trace which has a fixed point. But this is not a necessary

condition. In fact one obtains a continuous multi-valued function

with a fixed point and no continuous trace by defining F from the

unit circle at the origin in the complex plane to itself by F(z) = the

two square roots of z.

The example.

Theorem 1. A bounded closed interval I of real numbers has the F.p.p.

Proof. Brouwer's theorem assures us that 2 has the f.p.p. Hence

in view of Lemma 1 it is sufficient to prove that every continuous

function F on 2 to 2 has a continuous trace. We shall in fact prove

that if 2? is a bounded closed interval of real numbers and F is a con-

tinuous multi-valued function on a space X to R, then F has a con-

tinuous trace/. Define/on X to R by/(#)=lub {y|y£F(#)}.

It is known [l ] that a multi-valued function from a space X to a

compact Hausdorff space Y is continuous if and only if x0EX im-

plies:

(1) F(xo) is closed,

(2) V open containing F(x0) implies that there exists an open set

U' containing x0 and such that whenever *££/' then F(x)QV, and

(3) yo£F(xo), yo£ V, and V open imply that there is an open set

U" containing x0 such that whenever xEU" then F(x)r\V9£0.

Let V24, be an open interval of length 2<b with center f(x'), where <f>

is a positive real number. Then V+ is also an open set containing f(x').

By (3) there is an open set U" containing x0 such that x£ U" implies

that F(x)i\V4,9^0. Hence x£U" implies that lub {y|y£F(x)}

=f(x)^f(x')-<b.
Let V={y\y<<b+f(x')]. This set V is open containing F(x').

Hence (2) implies that there exists an open set U' containing x' such
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that xEU' implies that F(¡c)CF. Then xEU' implies fix)

= lub {y\yEFix)}t%fix')+<p. Let U-> UT\U". Then xEU implies
that \fix) —fix') | ¿0, therefore /(x) G V2<tl, and / is continuous at x'.

Theorem 1 established that 7 has the F.p.p. Let r be a continuous

function which retracts the unit square 7X7 onto the unit disc X.

Define F from I to I as follows. If x is the origin, let Fix)=S,

where S denotes the unit circle with center at the origin. If x is not

the origin: (a) Extend the segment from the origin through x until it

meets 5 in a point A. (b) Draw a perpendicular at x to the radius

constructed in (a) and denote its intersections with S as B and C.

(c) Consider the closed arc BA C on S. Let MBA CN be the closed arc

of S with center A, length twice the length of the arc BA C, and hav-

ing end points M and N. (d) Let Fix) = MBACN. That F has the

three properties utilized in the proof of Theorem 1 is geometrically

evident and hence F is continuous. Define G to be iFr followed by a

rotation of ninety degrees, where i denotes the injection of X into

7X7. The continuity of G follows from [l, Proposition 18]. Now

xEilXl)-S implies that xEGix) because G(7X7)C5. Also xES
implies that Fix) = x and the rotation moves x. Hence G has no fixed

point and consequently 7X7 does not have the F.p.p.

Cartesian and apex functions. Most theorems on fixed points for

multi-valued functions demand either that Fix) be a connected set

for every x or that Fix) be a convex set for every x. The literature

appears to be void of fixed point theorems with no condition on the

image of a point. Theorem 1 above is such a theorem. The example

above shows that the two-dimensional cube does not have the F.p.p.

A simple extension of this result shows that no Tychonoff cube of

dimension greater than one has the F.p.p. Then in order to prove

theorems concerning fixed points for functions on a Tychonoff cube

one must place some further conditions on F. The following theorems

indicate that F may enjoy much greater pointwise freedom than is

allowed under the usual assumption that Fix) is either convex or

connected.

Definition 2. Cartesian function. Let T — PIa be a Tychonoff

cube. A subset Fo of T is called a P-cartesian subset if Y0=PMa,

where Ma is a subset of 7„. A function F from a space X to a space Y

is called a cartesian function if there exists a homeomorphism h of

F into some Tychonoff cube T such that (1) hi Y) is a retract of T and

(2) xEX implies that hFix) is a P-cartesian subset of T.

Theorem 2. Every continuous Cartesian function from a space X to

itself has a fixed point.
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Proof. Let F be a continuous cartesian function on X to itself.

There is a Tychonoff cube T=PIa, a homeomorphism h of X into T,

and a retraction r of T onto h(T) such that xEX implies that hF(x)

is a F-cartesian subset of T. Let G(x) =ihF(x), where i denotes the

injection of h(X) into T. Define H on F to F by H(x) =Ghrlr(x)

= ihFh~1r(x) and define Ha from F to 20 by Ha(x) =the projection of

22(x) in 20. That H and 22„ are continuous is established in [l]. In

the proof of Theorem 1 it was shown that Ha has a continuous trace

/„. Kakutani [S] showed that if each/0 is a continuous single-valued

function, so is/defined byf(x) =Pfa(x). For each a,fa(x) is an element

of Ha(x) and H(x) =PMa(x), where Ma is a subset of 20, so that/(x)

EH(x). Now/is a continuous single-valued function from a Tycho-

noff cube to itself and hence has a fixed point.

Let x' be a fixed point of H. Then x'EH(x')=ihFh~lr(x')

= hFh~lr(x'). Since x'£F, r(x')Eh(T) and hence there exists x"ET

such that r(x')=h(x"). Then x'EH(x')=hFh-1h(x")=hF(x")

QhF(X)CZh(X). The function r retracts FontoA(^f), hence x' = r(x')

= h(x"), x" = h~l(x'), x'EhF(x"), and x" = h-1(x')EF(x").

Definition 3. Apex set. Let 23 be a closed subset of a Tychonoff

cube T = PIa. Denote by Ba and ba the projections of B and of 6, re-

spectively, in Ia. For a fixed a denote lub {ba\ baEBa\ by m(Ba). The

set Ba is closed and hence m(Ba)EBa. If there is only one point in B

which projects onto m(Ba) we say that B is an apex subset of T with

respect to a.

Definition 4. Apex function. A function F from a space X to a

space Y is called an apex function if there is a homeomorphism h of

F onto a retract of a Tychonoff cube T = PIa such that, for some fixed

a = a(l), x£X implies that hF(x) is an apex subset of T with respect

too(l).

Theorem 3. Fziery continuous apex function from a space X to itself

has a fixed point.

Proof. Let G be a continuous apex function from X to X. Then

there is a Tychonoff cube T = PIa, a homeomorphism hoi X into T, a

retraction r of T onto /¿(A''), and a fixed a = a(\) such that #£X im-

plies that hG(x) is an apex subset of T with respect to a(i). The

function F=hGhrlr is defined on T to F. As in the proof of Theorem 2,

F„<i) is continuous. By (1) in the proof of Theorem 1, ¿£F implies

that Faa)(t) is closed and hence ¿£F implies that m[Fam(t)] is an

element of Fam(f). The hypothesis that G is an apex function im-

plies that there is exactly one t'EF(t) such that t' projects onto

w[F„(i)(/)]. Define a single-valued function / from F to F by/(í) =t'.
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Clearly / is a trace of F.
Let x° be an element of T and let y° be an element of Fix"). Let <p

be a real number greater than zero and let Va(X)i<b) contain faa)ix°)

= 3,<¡(D- By (3) in the proof of Theorem 1 there is an open set Z7" con-

taining x° such that whenever xE U", then Famix)i~^ Vao.)i4>°)?*0, and

hence/o(i)(x)=lub {ytt(X)\y<ni)EFaa)ix)} is greater than ya(x) —<f>.

Let W = {y0(i)|yo(i)<y2u)+^}- Then W is open and contains

Faa)ix°) so that (2) in the proof of Theorem 1 implies the existence of

an open set U' containing x" such that Fix) is contained in W for all

xEU', i.e.,xEU' implies lub {y«(i)|y0a)GPa(i)(x)} <y°(i)+#.

Now xE U'C\ U" implies that y°aW -<p <yaix) «/.(»(*) <y°tt<X) +4>, and

hence /„(d is continuous.

Let/(x°) =y°. Assume that/ is not continuous at x°. Then there

exists an open set W containing y°, a directed set D, and a sequence

fxd}—>*° such that dED implies that fixd) E W. The set T-W is
closed and hence compact. The sequence [fixd)} determines a net <j>

on D to T—W defined by 4>id)~fixd) and hence [9, Theorem 24]

there exists a subnet (£, 0) with a limit yin T—W. Let k be the func-

tion on E to D satisfying the definition of subnet. Since <b(d) =f(xd),

Q(e)=<j>k(e)=f(Xk(,)). If V is an open set containing y, then there

existse( V)EEsuch that e*e(V) implies that 6(e)EV.lí U is an open

set containing x°, then there exists d' such that d * d' implies that

XdEU. If d'ED then there exists e' such that e*e' implies that

k(e) *d'. Therefore e*e' implies that Xku)EU. Then {xk(.)} —*x° and

{/«<» (**:(«>) }~*ya(i)- It was shown that /0<d is continuous, hence

fa(i)(x0) = yaa). But/a(i)(:x:0)=yâ(i), therefore yaa)=ylm- Then the hy-

pothesis that F is an apex function implies that y = y°, which is an

element of W. But yET—W. This contradiction implies that our

assumption was false and / is continuous. This trace / is a continuous

single-valued function on a Tychonoff cube to itself and hence

Lemma 1 implies that F has a fixed point x0. The proof that h~l(x0)

is a fixed point of G is a reiteration of the last statement in the proof

of Theorem 2.
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ERRATA, VOLUME 3

C. W. Curtis, A note on noncommutative polynomials.

p. 965, line 10 from the bottom. Add to condition (b): "where
F(r) 7*0 if r^O."

ERRATA, VOLUME 4

W. R. Mann, Mean value methods in iteration.

p. 507, Display (2) should include the following:

lim aij = 0 for all j.

E. Michael, A note on paracompact spaces.

p. 835, diagram near the top of the page. For "covering" read

"open covering" (twice), and for "refinement" read "open refinement"

(twice).


