A NOTE ON PREHARMONIC FUNCTIONS

A. C. ALLEN AND B. H. MURDOCH

1. Let L be the set of points whose coordinates are rational integers. Let D be a domain, that is to say, an open connected set, and let G be the set $D \cdot L$. A point P(m, n) of G is an *interior* point if the four points $(m \pm 1, n)$, $(m, n \pm 1)$ contiguous to P belong to G. Otherwise P is a boundary point.

A function f(m, n) defined on G is preharmonic if the value of f at any interior point is the mean of the values of f at the contiguous points, that is to say

$$4f(m, n) = f(m + 1, n) + f(m - 1, n) + f(m, n + 1) + f(m, n - 1).$$

For several decades the subject of preharmonic functions has been considered by many mathematicians, and the connection with harmonic functions has long been known. A recent paper by Heilbronn [1] states a number of theorems which are the analogues of classical theorems for harmonic functions.

In this note we consider functions which are preharmonic and non-negative in the half-plane $n \ge 0$ and prove a representation theorem analogous to that for positive harmonic functions [2], and a theorem which is the analogue of the Phragmén-Lindelöf type theorem for positive harmonic functions [3; 4].

2. We require the following lemmas:

LEMMA 1. If f(m, n) is preharmonic on a bounded domain D, then f(m, n) is either constant or attains its maximum and minimum on D on the boundary only.

LEMMA 2. If f(m, n) is preharmonic everywhere and satisfies the inequality¹

$$|f(m, n)| < A \{1 + (|m| + |n|)^k\}$$

for all m, n, where k is a positive integer, then f(m, n) is a polynomial of degree not exceeding k.

Received by the editors April 9, 1952 and, in revised form, April 13, 1953.

¹ In what follows, A will always represent a positive nonzero number, independent of the variables in the context.

These lemmas are special cases of Theorems 1 and 6 of Heilbronn's paper.

LEMMA 3. The function

$$h(m, n) = \frac{1}{\pi} \int_0^{\pi} \cos mt \, \phi^n(t) dt,$$

where $\phi(t)$ is the smaller root of the equation

$$\phi(t) + \phi^{-1}(t) + 2\cos t = 4,$$

is preharmonic everywhere with the following properties:

- (a) h(0, 0) = 1,
- (b) h(m, 0) = 0 for $m \neq 0$,
- (c) h(m, n) > 0 for n > 0,
- (d) $|h(m,n)-n/\pi(m^2+n^2)| < A/n(m^2+n^2)$ for all m and positive n.
- (a) and (b) follow by inspection. To prove (c), let

$$M(n) = \underset{|m| < \infty}{\text{glb}} h(m, n)$$

for $n \ge 0$. It is easily seen that $|\phi(t)| < 1$ for $0 < t \le \pi$ and so $M(n) \to 0$ as $n \to \infty$ and, from the difference equation for preharmonic functions, we have for $n \ge 1$

$$2M(n) \ge M(n+1) + M(n-1)$$

and, since M(0) = 0, the result follows.

It may be verified that $\phi(t)$ is a positive decreasing function of t in $(0, \pi)$ with derivatives of all orders there, that

(1)
$$\phi'(\pi) = 0, \lim_{t\to 0+} \phi'(t) = -1,$$

(2)
$$\phi(t) = 1 - t + t^2/2 - t^3/12 + O(t^4)$$

as $t\rightarrow 0+$, and that there exists a real number $\eta>0$ such that

$$\phi(t) \le e^{-\eta t} \qquad \text{for } 0 \le t \le \pi.$$

Integrating by parts twice in the expression for h(m,n) we have from (1) and the fact that $\sin m\pi = 0$

$$\pi h(m, n) = \frac{n}{m^2} - \frac{n}{m^2} \int_0^{\pi} \phi^{n-2}(t) \cos mt [(n-1) \{\phi'(t)\}^2 + \phi(t)\phi''(t)] dt,$$

or, adding $\pi(n^2/m^2)h(m, n)$ to each side,

$$\pi \cdot \frac{m^2 + n^2}{m^2} \cdot h(m, n) = \frac{n}{m^2} - \frac{n}{m^2} \int_0^{\pi} \phi^{n-2}(t) \psi(t) \cos mt dt,$$

where

$$\psi(t) = (n-1) \{\phi'(t)\}^2 + \phi(t)\phi''(t) - n\phi^2(t).$$

From the enunciated properties of $\phi(t)$ we may easily show that

$$|\psi(t)| < A(|n|t^2+t)$$

for $0 < t \le \pi$. Thus, by (3), we have for $n \ge 1$

$$\left| \pi \cdot \frac{m^2 + n^2}{m^2} \cdot h(m, n) - \frac{n}{m^2} \right| < A \frac{n}{m^2} \int_0^{\pi} e^{-n\eta t} (nt^2 + t) dt$$

$$< \frac{A}{nm^2},$$

and this completes the proof of Lemma 3.

3. THEOREM 1. A necessary and sufficient condition for a function f(m, n) to be non-negative and preharmonic for $n \ge 0$ is that the numbers f(m, 0) $\{m = 0, \pm 1, \pm 2, \cdots\}$ should be non-negative and satisfy

$$\sum_{m=1}^{\infty} \frac{f(m,0)}{1+m^2} < \infty$$

and that there should exist a non-negative number D for which

(4)
$$f(m, n) = Dn + \sum_{r=-\infty}^{\infty} f(r, 0)h(m - r, n)$$

for $n \ge 0$.

SUFFICIENCY. For any large positive N and n>0 we have, from Lemma 3(d),

$$\sum_{r=-N}^{N} f(r, 0) h(m-r, n) < A \sum_{r=-N}^{N} \frac{f(r, 0) n}{(m-r)^2 + n^2}$$

$$< AC(m, n) \sum_{r=-N}^{N} \frac{f(r, 0)}{1 + r^2}$$

where

$$C(m, n) = \lim_{|r| < \infty} \frac{n(1+r^2)}{(m-r)^2 + n^2}$$

and is finite for any fixed m, n. Thus the function defined by (4) is

an absolutely convergent series of non-negative preharmonic functions and, hence, is itself non-negative and preharmonic for $n \ge 0$.

NECESSITY. Let R be a positive integer and define

$$f_R(m, n) = f(m, n) - \sum_{r=-R}^{R} f(r, 0) h(m - r, n).$$

Evidently $f_R(m, n)$ is preharmonic in the half-plane $n \ge 0$ and also

$$f_R(m, n) \geq - \left\{ \max_{|r| \leq R} h(m-r, n) \right\} \sum_{r=-R}^R f(r, 0).$$

From Lemma 3(d) the right-hand side has arbitrarily small modulus for all points (m, n) of the half-plane lying outside a sufficiently large circle with centre at (0, 0). Since, by Lemma 1, a preharmonic function in a finite domain attains its minimum on the boundary and $f_R(m, n) = 0$ for n = 0, it follows that for $n \ge 0$, $f_R(m, n) \ge 0$. That is to say, for $n \ge 0$ we have

$$f(m, n) \geq \sum_{r=-R}^{R} f(r, 0) h(m - r, n),$$

and letting $R \rightarrow \infty$

(5)
$$f(m, n) \geq \sum_{r=-\infty}^{\infty} f(r, 0) h(m-r, n).$$

Next, by Lemma 3(d), there exists a large positive integer N for which

$$h(m, N) > 1/(N^2 + m^2)$$

for all integers m. Thus we have, from (5),

$$f(0, N) \ge \sum_{r=-\infty}^{\infty} f(r, 0) h(-r, N)$$

$$\ge \sum_{r=-\infty}^{\infty} \frac{f(r, 0)}{r^2 + N^2}$$

$$\ge \frac{1}{N^2} \sum_{r=-\infty}^{\infty} \frac{f(r, 0)}{1 + r^2}.$$

This proves that if f(m, n) is non-negative and preharmonic for $n \ge 0$,

$$\sum_{r=-\infty}^{\infty} \frac{f(r,0)}{1+r^2} < \infty.$$

If we write

$$f_{\infty}(m, n) = f(m, n) - \sum_{r=-\infty}^{\infty} f(r, 0) h(m - r, n),$$

it remains to show that $f_{\infty}(m, n) = Dn$ for some non-negative D. Now since the series $\sum_{r=-\infty}^{\infty} f(r, 0)h(m-r, n)$ is convergent and each term is non-negative and preharmonic for $n \ge 0$, $f_{\infty}(m, n)$ also is non-negative and preharmonic for $n \ge 0$, and, a fortiori, for any integral t > 0, $f_{\infty}(m, n+t)$ is non-negative and preharmonic for $n \ge 0$. From what we have just proved above, we have

$$\sum_{r=-\infty}^{\infty} \frac{f_{\infty}(r, t)}{1 + r^2} < \infty$$

and, a fortiori, $f_{\infty}(m, t) < K_{t}(1+m^{2})$, where K_{t} is finite for each integral t. Let us assume for the moment that we have shown that

(6)
$$f_{\infty}(m, n) < A n^{2} (1 + m^{2}) < A [1 + (|m| + |n|)^{4}]$$

for n>0. We may continue $f_{\infty}(m, n)$ uniquely throughout the entire plane by writing

$$f_{\infty}(m, -n) = -f_{\infty}(m, n)$$

for n > 0, and have

(8)

- (i) $f_{\infty}(m, n)$ preharmonic everywhere,
- (ii) $f_{\infty}(m, n) < A[1 + (|m| + |n|)^4]$ everywhere,
 - (iii) $f_{\infty}(m, 0) = 0$ for all m,
 - (iv) sign $f_{\infty}(m, n) = \text{sign } n \text{ for } n \neq 0$.

Applying Lemma 2 to $f_{\infty}(m, n)$ it follows from (8)(ii) that $f_{\infty}(m, n)$ is a polynomial of degree not exceeding 4. From (8)(iii), n must be a factor of $f_{\infty}(m, n)$; since $f_{\infty}(m, n)$ by (7) contains only odd powers of n we must have

$$f_{\infty}(m, n) = n\phi(m, n^2),$$

where $\phi(m, n^2)$ is a polynomial of degree not exceeding 3. Further, from (8)(iv), $\phi(m, n^2)$ is everywhere non-negative, and so of degree not exceeding 2. We have now shown that

$$f_{\infty}(m, n) = n(\alpha m^2 + \beta n^2 + \gamma m + \delta)$$

where α and β are non-negative. It may be verified, from the difference equation, that since $f_{\infty}(m, n)$ is preharmonic, then $\alpha+3\beta=0$. Thus $\alpha=\beta=0$ and this implies that $\gamma=0$ and $\delta\geq 0$. This completes the proof that

$$f_{\infty}(m, n) = Dn$$

for some non-negative D.

It remains to prove (6). Consider the function

$$g(m, n, \overline{m}, 2\overline{n}) = \frac{1}{\overline{n}} \sum_{r=1}^{2\overline{n}} \sin \frac{r\pi(m - \overline{m} + \overline{n})}{2\overline{n}} \cdot \sin \frac{r\pi}{2} \cdot \frac{\sinh \alpha_r n}{\sinh 2\alpha_r \overline{n}}$$

where α_r is the positive root of the equation

(9)
$$\cosh \alpha_r + \cos \frac{r\pi}{2\bar{n}} = 2.$$

This function is preharmonic everywhere² and may be shown to satisfy

$$g(m, n, \overline{m}, 2\overline{n}) = \begin{cases} 0 & \text{for } m = \overline{m} \pm \overline{n}, \\ 0 & \text{for } n = 0, \\ 0 & \text{for } 1 \le |m - \overline{m}| \le \overline{n}, n = 2\overline{n}, \\ 1 & \text{for } m = \overline{m}, n = 2\overline{n}. \end{cases}$$

Further,

$$g(\bar{m}, 1, \bar{m}, 2\bar{n}) = \frac{1}{\bar{n}} \sum_{r=1}^{2\bar{n}} \sin^2 \frac{r\pi}{2} \cdot \frac{\sinh \alpha_r}{\sinh 2\alpha_r \bar{n}}$$
$$\geq \frac{1}{\bar{n}} \frac{\sinh \alpha_1}{\sinh 2\alpha_1 \bar{n}}.$$

From (9) we have

$$\cosh \alpha_r = 2 - \cos \frac{r\pi}{2\bar{n}} < \cosh \frac{r\pi}{2\bar{n}},$$

and so

$$\alpha_r < \frac{r\pi}{2\bar{n}},$$

and substituting this in the inequality for $g(\bar{m}, 1, \bar{m}, 2\bar{n})$ we deduce that

(11)
$$g(\bar{m}, 1, \bar{m}, 2\bar{n}) > A/\bar{n}^2$$

Let us suppose that (6) is not true. Then there exists an increasing sequence of integers $\{n_r\}$, and a corresponding sequence of integers $\{m_r\}$ such that as $\nu \to \infty$

² This method of writing preharmonic functions as a sum of products is due to Phillips and Wiener [5].

$$\frac{f_{\infty}(m_{\nu}, n_{\nu})}{n_{\pi}^2(1+m_{\pi}^2)} \to \infty.$$

We shall suppose first that the integers n, are even. Consider the function

$$\bar{f}_{r}(m, n) = f_{\infty}(m, n) - f_{\infty}(m_{r}, n_{r})g(m, n, m_{r}, n_{r}).$$

From (10) and (11) it is apparent that $\bar{f}_r(m, n) \ge 0$ on the boundary of the square $|m-m_r| \le n_r$, $0 \le n \le n_r$, and also, by Lemma 1, inside the square. In particular, we have

$$f_{\infty}(m_{\nu}, 1) \geq f_{\infty}(m_{\nu}, n_{\nu})g(m_{\nu}, 1, m_{\nu}, n_{\nu}),$$

and so, by (11),

$$f_{\infty}(m_{\nu}, n_{\nu}) < A n_{\nu}^{2} (1 + m_{\nu}^{2}),$$

which contradicts our assumption. Similarly, if the sequence is odd, we may show that

$$f_{\infty}(m_{\nu}, n_{\nu}) < A n_{\nu}^{2} (1 + m_{\nu}^{2}).$$

COROLLARY. Suppose f(m, n) to be preharmonic and non-negative in $n \ge 0$. Then, as $n \to \infty$ subject to the condition am + bn = 0 where a and b are integers,

$$f(m, n) - H(m, n) = Dn + O\{(m^2 + n^2)^{-1/2}\},\,$$

where D is a non-negative number and

$$H(m, n) = \frac{1}{\pi} \sum_{r=0}^{\infty} f(r, 0) \cdot \frac{n}{(m-r)^2 + n^2}$$

This result follows immediately from Theorem 1 and Lemma 3(d).

4. If $H(re^{i\theta})$ is positive and harmonic in the half-plane $0 < \theta < \pi$, then it may be written as [2]

(12)
$$H(re^{i\theta}) = dr \sin \theta + \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{r \sin \theta}{r^2 - 2rt \cos \theta + t^2} dg(t)$$

where d is a non-negative number and g(t) is a nondecreasing function such that

$$\int_{-\infty}^{\infty} \frac{dg(t)}{1+t^2} < \infty.$$

LEMMA 4. If $H(re^{i\theta})$ is defined by (12), $-1 < \rho < 1$, $0 < \phi < \pi$, n is an integer and α , δ are any positive numbers such that

$$H(n\delta e^{i\phi}) \sim \alpha(n\delta)^{\rho}$$

as $n \rightarrow \infty$, then

$$H(re^{i\phi}) \sim \alpha r^{\rho}$$

as $r \rightarrow \infty$.

There is no loss in generality in assuming d = 0, and so as $n \to \infty$

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{dg(t)}{(n\delta)^2 - 2n\delta t \cos \phi + t^2} \sim \alpha \operatorname{cosec} \phi \cdot (n\delta)^{\rho-1}.$$

This is easily shown to imply that for x>1

$$\frac{g(x)-g(-x)}{x^2}+\int_{-x}^{\infty}\frac{d\{g(t)-g(-t)\}}{x^2+t^2}< Ax^{\rho-1}.$$

Further, it will be sufficient to prove that for $|r-\sigma| \le 1$ and $r \to \infty$

$$H(re^{i\phi}) - H(\sigma e^{i\phi}) = o(r^{\rho}).$$

Now from (12), since d=0,

$$\begin{aligned} \left| H(re^{i\phi}) - H(\sigma e^{i\phi}) \right| \\ &= \left| \frac{(r-\sigma)\sin\phi}{\pi} \int_{-\infty}^{\infty} \frac{(t^2-r\sigma)dg(t)}{(r^2-2rt\cos\phi+t^2)(\sigma^2-2\sigma t\cos\phi+t^2)} \right| \\ &\leq A \left[\frac{g(r)-g(-r)}{r^2} + \int_{r}^{\infty} \frac{d\{g(t)-g(-t)\}}{r^2+t^2} \right] \\ &\leq A r^{\rho-1} \\ &= o(r^{\rho}) \end{aligned}$$

as $r \rightarrow \infty$.

The following two lemmas are contained in a paper by Allen and Kerr [4]:3

LEMMA 5. If $H(re^{i\theta})$ is defined by (12), $-1 < \rho < 1$, and

$$H(re^{i\pi/2}) \sim (1+\rho)\alpha r^{\rho} \sec \rho \pi/2$$

as $r \rightarrow \infty$, then

$$g(x)$$
 $-fg(-x) \sim 2\alpha x^{1+\rho}$

as $x \to \infty$.

^{*}Actually Allen and Kerr state their results for the case $r\rightarrow 0+$, but the case $r\rightarrow \infty$ is an elementary corollary.

LEMMA 6. If $H(re^{i\theta})$ is defined by (12), $-1 < \rho < 1$, and

(13)
$$H(re^{i\theta}) \sim (1+\rho) \operatorname{cosec} \rho \pi \left[\alpha \sin \rho (\pi-\theta) + \beta \sin \rho \theta\right] r^{\rho}$$

as $r \rightarrow \infty$ for two distinct values of θ , then (13) remains true for all values of θ and as $x \rightarrow \infty$

$$g(x) - g(0) \sim \alpha x^{1+\rho}, \qquad g(0) - g(-x) \sim \beta x^{1+\rho}.$$

THEOREM 2. If f(m, n) is non-negative and preharmonic in the halfplane $n \ge 0, -1 < \rho < 1$, and

$$f(0, n) \sim (1 + \rho)\alpha \sec \rho \pi/2 \cdot n^{\rho}$$

as $n \rightarrow \infty$, then

$$\sum_{m=-R}^{R} f(m, 0) \sim 2\alpha R^{1+\rho}$$

as $R \rightarrow \infty$.

THEOREM 3. If f(m, n) is non-negative and preharmonic in the halfplane $n \ge 0$, $-1 < \rho < 1$, and

$$f(m, n) \sim (1 + \rho) \operatorname{cosec} \rho \pi \left[\alpha \sin \rho \left(\pi - \arctan \frac{n}{m} \right) + \beta \sin \rho \left(\arctan \frac{n}{m} \right) \right] (n^2 + m^2)^{\rho/2}$$

as $n \to \infty$ for two distinct rational values of n/m, then (14) remains true for all rational values of n/m, and as $R \to \infty$ we have

$$\sum_{m=0}^{R} f(m, 0) \sim \alpha R^{1+\rho}, \qquad \sum_{m=0}^{0} f(m, 0) \sim \beta R^{1+\rho}.$$

In (12) we define g(x) to be constant in the interval n < x < n+1, for all integers n and with saltus f(n, 0) at x = n: then Theorems 2 and 3 follow directly from the corollary to Theorem 1 and Lemmas 4, 5, and 6.

THEOREM 4. If f(m, n) is non-negative and preharmonic in the halfplane $n \ge 0$, and for some finite $\bar{n} \ge 0$

$$\lim_{m\to\infty} f(m,\,\bar{n}) = \alpha,$$

then we have

$$\lim_{m\to\infty} f(m, n) = \alpha_n$$

for $n \ge 0$ where α_n is a linear function of n.

f(m, n) is non-negative and preharmonic in the half-plane $n \ge \tilde{n}$ and so by Theorem 1 has the representation

$$f(m, \bar{n} + p) = Dp + \sum_{r=-\infty}^{\infty} f(r, \bar{n}) h(m - r, p)$$

for p>0, and some non-negative D. From the definition of h(m, n) it is easily verified that

(15)
$$\sum_{m=1}^{\infty} h(m, p) = 1.$$

Also, from Lemma 3(d), for p>0

(16)
$$h(m, p) < Ap/(m^2 + p^2).$$

From the hypothesis and Theorem 1, given $\epsilon > 0$ there exists an integer N > 0 for which

$$|f(m, \bar{n}) - \alpha| \leq \epsilon$$

for m > N and for which

(18)
$$\sum_{r=-\infty}^{-N} \frac{f(r, \bar{n})}{1+r^2} \leq \epsilon.$$

We may now apply (15)-(18) as follows:

$$\begin{aligned} \left| f(m, \, \bar{n} + p) - Dp - \alpha \right| \\ &\leq \sum_{r = -\infty}^{\infty} \left| f(r, \, \bar{n}) - \alpha \right| h(m - r, \, p) \\ &\leq \sum_{r = -\infty}^{N} f(r, \, \bar{n}) h(m - r, \, p) + \alpha \sum_{r = -\infty}^{N} h(m - r, \, p) \\ &+ \sum_{r = N+1}^{\infty} \left| f(r, \, \bar{n}) - \alpha \right| h(m - r, \, p) \\ &\leq Ap \sum_{r = -\infty}^{N} \frac{f(r, \, \bar{n})}{1 + r^2} + \frac{Ap}{(m - N)^2} \sum_{r = -N}^{N} f(r, \, \bar{n}) \\ &+ Ap\alpha \sum_{r = m-N}^{\infty} \frac{1}{r^2 + p^2} + \epsilon \sum_{r = N+1}^{\infty} h(m - r, \, p) \\ &\leq Ap\epsilon + \frac{Ap}{(m - N)^2} \sum_{r = -N}^{N} f(r, \, \bar{n}) + \frac{Ap\alpha}{m - N} + \epsilon. \end{aligned}$$

It is apparent that by a suitable choice of ϵ and correspondingly large m, the right-hand side is arbitrarily small. This proves the theorem for $n > \bar{n}$ and the complete result follows from the difference equation for preharmonic functions.

We are grateful to a referee for helpful criticism of the presentation of this paper. One of us (A.C.A) is indebted to the Commonwealth Fund of New York for a Commonwealth Fellowship.

REFERENCES

- 1. H. A. Heilbronn, Proc. Cambridge Philos. Soc. vol. 45 (1949) pp. 194-206.
- 2. L. H. Loomis and D. V. Widder, Duke Math. J. vol. 9 (1942) pp. 643-645.
- 3. L. H. Loomis, Trans. Amer. Math. Soc. vol. 53 (1943) pp. 239-250.
- 4. A. C. Allen and E. Kerr, J. London Math. Soc. vol. 28 (1953) pp. 80-89.
- 5. H. B. Phillips and N. Wiener, Journal of Mathematics and Physics vol. 2 (1923) pp. 105-124.

PRINCETON UNIVERSITY

A THEOREM OF PHRAGMÉN-LINDELÖF TYPE1

ALFRED HUBER

1. Introduction. In the present paper the Phragmén-Lindelöf theorem for harmonic functions in the formulation of M. Heins [4] shall be extended to the solutions of the elliptic partial differential equation

(1.1)
$$L_k[u] \equiv \sum_{1}^{n} \frac{\partial^2 u}{\partial x_i^2} + \frac{k}{x_n} \frac{\partial u}{\partial x_n} = 0 \qquad (k < 1)$$

(k denoting a real constant). Equation (1.1) appears in several problems. For an exposition of previous results in the theory of the solutions of (1.1) we refer to a recent paper of A. Weinstein [9].

A theorem of Phragmén-Lindelöf type for the solutions of a rather general class of elliptic partial differential equations has been proved by D. Gilbarg [3] and E. Hopf [5]. Because of the singular coefficient, (1.1) is not contained in this class.

We introduce the following notations, $P(x_1, x_2, \dots, x_n)$ denoting a point in the *n*-dimensional space:

Presented to the Society, February 28, 1953; received by the editors March 30, 1953.

¹ Sponsored by the Office of Naval Research under contract Nr. N7 ONR-39705.