
A NOTE ON PREHARMONIC FUNCTIONS

A. C. ALLEN AND B. H. MURDOCH

1. Let L be the set of points whose coordinates are rational inte-

gers. Let D be a domain, that is to say, an open connected set, and

let G be the set DL. A point P(m, n) of G is an interior point if the

four points (m± 1, n), (m, n± 1) contiguous to P belong to G. Other-

wise P is a boundary point.

A function f(m, n) defined on G is preharmonic if the value of /

at any interior point is the mean of the values of / at the contiguous

points, that is to say

4/(«, n) = f(m + 1, n) + f(m - 1, n) + f(m, n + 1)

+ f(m,n- 1).

For several decades the subject of preharmonic functions has been

considered by many mathematicians, and the connection with har-

monic functions has long been known. A recent paper by Heilbronn

[l ] states a number of theorems which are the analogues of classical

theorems for harmonic functions.

In this note we consider functions which are preharmonic and non-

negative in the half-plane « ^ 0 and prove a representation theorem

analogous to that for positive harmonic functions [2], and a theorem

which is the analogue of the Phragmén-Lindelof type theorem for

positive harmonic functions [3; 4].

2. We require the following lemmas:

Lemma 1. If f(m, n) is preharmonic on a bounded domain D, then

f(m, n) is either constant or attains its maximum and minimum on D

on the boundary only.

Lemma 2. If f(m, n) is preharmonic everywhere and satisfies the in-

equality1

|/(»,») | <¿{l+(|«| + |n|)*}

for all m, n, where k is a positive integer, then f(m, n) is a polynomial

of degree not exceeding k.

Received by the editors April 9, 1952 and, in revised form, April 13, 1953.
1 In what follows, A will always represent a positive nonzero number, inde-

pendent of the variables in the context.
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These lemmas are special cases of Theorems 1 and 6 of Heilbronn's

paper.

Lemma 3. The function

1   f
IT  J o

h(m, n) = — I    cos ml<b"(t)dt,
ir J 0

where <p(t) is the smaller root of the equation

<t>(t) + <trl(t) + 2 cos / = 4,

is preharmonic everywhere with the following properties :

(a) k(0, 0) = 1,
(b) h(m, 0)=0 for m^O,
(c) Â(w, n)>0 for n>0,

(d) | Ä(m, w) — n/ir(m2+n2) | <A/n(m2+n2)for all m and positive n.

(a) and (b) follow by inspection. To prove (c), let

M(n) =   gib   h(m, n)
1ml <«

for «^0. It is easily seen that \(¡>(t)\ <1 for 0<t^ir and so M(n)—>0

as n—>oo and, from the difference equation for preharmonic func-

tions, we have for n ï; 1

2M(«) â M(n + 1) + M(m - 1)

and, since Af(0) =0, the result follows.

It may be verified that <f>(t) is a positive decreasing function of t

in (0, ir) with derivatives of all orders there, that

(1) *'(*) = 0, lim 4>'(t) = - 1,
«-H>+

(2) ¿(i) = 1 - I + t2/2 - tl/\2 + 0(1*)

as i—>0 + , and that there exists a real number 77 >0 such that

(3) <t>(t) ̂ g-" for 0 g / ^ x.

Integrating by parts twice in the expression for h(m, n) we have from

(1) and the fact that sin mir = 0

irh(m, n) =-I    4>"-2(/)cos mt[(n - 1) {<*>'(/)}2 + <t>(l)<p"(t)]dl,
m2     m2Jo

or, adding Tr(n2/m2)h(m, n) to each side,
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PI2 + »2' n       n   r *
■h(m, n) =-I    <¡>n-2(í)4>(t)cos mtdt,

m2     m2J o

where

m - (n - l){<b'(t)}<- + <t>(l)<b"(t) - mb2(t).

From the enunciated properties of (b(t) we may easily show that

| *(fl | < A( | n | I2 + t)

for 0</^ir. Thus, by (3), we have for «^1

m2 + n2 n
t-h(m, n)-

m2 m2

n  rT
< A — I    e-""(»/2 + t)dt

m2Jo

A
<-,

nm2

and this completes the proof of Lemma 3.

3. Theorem 1. A necessary and sufficient condition for a function

f(m, n) to be non-negative and preharmonic for w^O is that the numbers

f(m, 0) \m = 0, +1, ±2, • • • } should be non-negative and satisfy

A   f(m,0)

m=-x  1 + m2

and that there should exist a non-negative number D for which

00

(4) f(m, n) = Dn-r- £ f(r, 0)h(m - r, n)
r=—oo

for n ̂  0.

Sufficiency. For any large positive N and «>0 we have, from

Lemma 3(d),

N N fir 0)w
£ /(r, 0)*(« - r, «)< A   E    , '      ,     ,

r-AT r_AT    (m  —   f)¿ +  U1

, Art      if    /(r'0)< AC(m, n) l_,   —-—:
r-—JT    1 + r2

where

»(1 + r2)
C(m, n) =lub

r|<«     (m — r)2 -f- m2

and is finite for any fixed m, n. Thus the function defined by (4) is
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an absolutely convergent series of non-negative preharmonic func-

tions and, hence, is itself non-negative and preharmonic for n^O.

Necessity. Let R be a positive integer and define

R

/b(«, ») =f(m, n) -   J2 f(r, 0)h(m - r, n).
r=-R

Evidently/«(m, n) is preharmonic in the half-plane n^O and also

/b(*», n) ^ - <max h(m - r, n)> X)/(r, 0).
\\r\&R )  r—B

From Lemma 3(d) the right-hand side has arbitrarily small modulus

for all points (m, n) of the half-plane lying outside a sufficiently large

circle with centre at (0, 0). Since, by Lemma 1, a preharmonic func-

tion in a finite domain attains its minimum on the boundary and

/s(w, n) = 0 for n = 0, it follows that for n ^ 0, fn(m, n) ^ 0. That is to

say, for w^0 we have

R

r=—R

and letting R-* »

00

(5) f(m, n) è   £ /('. 0)*(« - f, »).

Next, by Lemma 3(d), there exists a large positive integer N for

which

h(m, N) > l/(N2 + m2)

for all integers m. Thus we have, from (5),

/(0, -V) è   ¿ /(r, 0)*(- r, .V)
r=—oo

f(r, 0)
è E

r2 + N2

>_1_    -     /(r, 0)

=  N2 ¿x   l + r2'

This proves that iif(m, n) is non-negative and preharmonic for «2:0,

rX   l+r2
If we write
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/„(*», n) = f(m, n) -   £ f(r, 0)h(m - r, »),

it remains to show that/aXw, w) =Dn for some non-negative Z>. Now

since the series £"_ _„ f(r, 0)h(m — r, n) is convergent and each term

is non-negative and preharmonic for n^0,f„(m, n) also is non-nega-

tive and preharmonic for w^O, and, a fortiori, for any integral

/>0, fx(m, n+t) is non-negative and preharmonic for n^O. From

what we have just proved above, we have

A    fjr, t) ^

r~x   í + r2

and, a fortiori,/„(w, /) <Kt(l+m2), where Kt is finite for each inte-

gral /. Let us assume for the moment that we have shown that

(6) fm(m, n) < An2(l + m2) < A [l + ( | m | + | » | )*]

for »>0. We may continue fm(m, n) uniquely throughout the entire

plane by writing

(7) fK(m, -n) = - fjjn, n)

for »>0, and have

(i)     fx(m, n) preharmonic everywhere,

(Ü)    /»(w. ») < A t1 + ( I m I + I n I )4] everywhere,
(8)

(iii)   f„(m, 0) = 0 for all m,

(iv)    sign fx(m, n) = sign n for »^0.

Applying Lemma 2 to fK(m, n) it follows from (8)(ii) that/«,(iw, n)

is a polynomial of degree not exceeding 4. From (8) (iii), n must be a

factor of fx(m, n); since fx(m, n) by (7) contains only odd powers of

n we must have

fjm, n) = n<t>(m, n2),

where <f>(m, n2) is a polynomial of degree not exceeding 3. Further,

from (8)(iv), <p(m, n2) is everywhere non-negative, and so of degree

not exceeding 2. We have now shown that

fM(m, n) = n(am2 + ßn2 + ym + 5)

where a and ß are non-negative. It may be verified, from the differ-

ence equation, that since f«,(m, n) is preharmonic, then a+3/3 = 0.

Thus a = j3 = 0 and this implies that y = 0 and 5^0. This completes

the proof that
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fx(m, n) = Dn

847

for some non-negative D.

It remains to prove (6). Consider the function

1 12,        rir(m — m + ñ)        rir   sinh aTn
g(m, n, m, 2«) = — ¿^ sin-sin————-

ñ r~x 2« 2   sinh 2arft

where ar is the positive root of the equation

(9)
rir

cosh aT + cos — = 2.
2»

This function is preharmonic everywhere2 and may be shown to

satisfy

g(m, n, m, 2w) =

0 for m = m ± »,

0 for » = 0,

0 for 1 g | m — m | á ñ, » = 2«,

1 for w = w, « = 2«.

Further,

1   12,          rir    sinh a,
g(wî, 1, í», 2ñ) = — ¿^ sin2-

« r-i 2   sinh 2arw

1     sinh ax

From (9) we have

and so

(10)

»  sinh 2«i»

rir rir
cosh a, = 2 — cos — < cosh — ;

2fl 2w

a, <
rr

2»

and substituting this in the inequality for g(m, 1, m, 2«) we deduce

that

(11) g(m, 1, wi, 2ä) > A/ñ2.

Let us suppose that (6) is not true. Then there exists an increasing

sequence of integers {«,}, and a corresponding sequence of integers

{w,} such that as v—><»

* This method of writing preharmonic functions as a sum of products is due to

Phillips and Wiener [5].
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fm(my, nr)

«îa + mî)-*00'

We shall suppose first that the integers n, are even. Consider the func-

tion

f,(m, n) = fjm, n) - fx(m„ n,)g(m, n, m„ »,)•

From (10) and (11) it is apparent that/„(»i, «)^0 on the boundary

of the square \m — m,\ :£»„ O^n^n,, and also, by Lemma 1, inside

the square. In particular, we have

fjjn,, 1) è f«,(m„ n,)g(m„ 1, m„ n,),

and so, by (11),
2 2

U(m„ »„) < Anv(l + m,),

which contradicts our assumption. Similarly, if the sequence is odd,

we may show that

fx(m„ w„) < An,(\ + m¡).

Corollary. Suppose f(m, n) to be preharmonic and non-negative in

n è 0. Then, as n—» °° subject to the condition am+bn = 0 where a and b

are integers,

f(m, n) - H(m, n) = Dn + 0{(m2 + n2)'1'2},

where D is a non-negative number and

H(m,n)=-   ¿/(r.O)---?——.-
ir  r._oo (m — ry + nl

This result follows immediately from Theorem 1 and Lemma 3(d).

4. If H(rea) is positive and harmonic in the half-plane O<0<ir,

then it may be written as [2]

1   r °° r sin 0
(12) H(re«) = dr sin 0 + - I-—-—-.dg(t)

■k J _«, r2 — 2rt cos 6 + t2

where d is a non-negative number and g(t) is a nondecreasing func-

tion such that

/:

dg(t)
< oo.

1 + t2

Lemma 4. // H(rea) is defined by (12), — Kp < 1, 0 <<j> <ir, n is an

integer and a, 5* are any positive numbers such that
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H(n5e'*) ~ a(w5)'

as n—> », then

H(re1*) ~ or»

as r—» oo.

There is no loss in generality in assuming d = 0, and so as n—»oo

1    r"

x J_„ (no)2 -

dg(t)

„ (»5)2 - 2w5/ cos tf> -f t2
a cosec <£ • (nô) P-i

+  I      - < Aaf1.

This is easily shown to imply that for *>1

f
x2 J x x2 +12

Further, it will be sufficient to prove that for \r — a\ gl and r—»oo

'{(re**) - H(ae1*) = o(f).

Now from (12), since d = 0,

| Hire1*) - 77(0-6**) |

I (r - a) sin <j> r " (t* - ra)dg(t)r —
J-» (r2 -(r2 - 2rt cos <b + t2)(a2 - 2<rt cos <£ + t2)

Yg(r) - g(-r)       Ç«  d{g(t) - g(-t)}l

=     L r2 Jr r2 + t2 J

g Ar*-*

= o(f)

as r—» oo.

The following two lemmas are contained in a paper by Allen and

Kerr [4]:8

Lemma 5. 7/77(re*) is defined by (12), — Kp<l, and

H(reir'2) ~ (1 + p)af sec pr/2

as r—> oo, ¿ftew

g(x)]—*g(-x) ~ 2aa;1+',

ai x—» oo.

• Actually Allen and Kerr state their results for the case r-*0+, but the case

r—» oo ¡s an elementary corollary.
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Lemma 6. // H(re*) is defined by (12), — Kp<l, and

(13)      H(rea) ~ (1 + p) cosec pw[a sin p(ir - 0) + ß sin pd]r',

as r—> =0 for two distinct values of 6, then (13) remains true for all values

of 6 and as x—> »

I(*) - f(0) ~ «*1+',        g(0) - g(- x) ~ /3*1+>.

Theorem 2. If f(m, n) is non-negative and preharmonic in the half-

plane »^0, — 1 <p< 1, and

/(0, n) ~ (1 -f- p)a sec pir/2-n11

as n—» oo, ¿Ac«

s
£ /(», 0) ~ 2alc1+'>

as 2?—» «o.

Theorem 3. If f(m, n) is non-negative and preharmonic in the half-

plane «^0, — Kp<l, and

(14)

/(w, w) ~ (1 + p) cosec pir \ a sin p f t — arctan — J

+ ß sin pi arctan — j   («» + f»2)"'2

as n—> oo /or /wo distinct rational values of n/m, then (14) remains true

for all rational values of n/m, and as R-* oo we have

B o

£ /(», 0) ~ a-R1+', £ /(*». 0) ~ 022«».

In (12) we define g(x) to be constant in the interval m<*<«-|-1, for

all integers n and with saltus/(w, 0) at x = n: then Theorems 2 and 3

follow directly from the corollary to Theorem 1 and Lemmas 4, 5,

and 6.

Theorem 4. Iff(m, n) is non-negative and preharmonic in the half-

plane m^O, and for some finite «^0

lim f(m, n) = a,
m—*oo

then we have

lim f(m, n) = a„
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for »^0 where an is a linear function of n.

fim, n) is non-negative and preharmonic in the half-plane n US ñ

and so by Theorem 1 has the representation

00

fim, ñ + p) = Dp+  £ fir, n)him - r, p)
r—ao

for p>0, and some non-negative D. From the definition of him, n) it

is easily verified that

(15) £ him, p) = 1.
m—oo

Also, from Lemma 3(d), for p>0

(16) him, p) < Ap/im2 + p2).

From the hypothesis and Theorem 1, given e > 0 there exists an inte-

ger N > 0 for which

(17) \f(m,*)-a\$t

for m > N and for which

^    fir,*)
(18) £   TX^á«.

r—„   1 + r2

We may now apply (15)—(18) as follows:

| fim, » + p) - Dp - a |

^   £ \fir,ñ)-cc\him-r,p)
r—oo

AT AT

^   £ /(r. *)*(» - ', P) + « £   *(» - r, p)

+  £   I f(r, ») - « | Km - r, p)
r-N+l

=i    fir, ñ) Ap »
<ApY,   -^-^ +-   £ fir, *)
-       _w   1 + r2      (m - AO2 ,ÍVV '

00 1 00

+ Apa   E      .  |   ,, + «   E   Km- r, p)
r-m-N   r    + p r-N+X

Ap " Apa

(m — N)2 ,_w m — N
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It is apparent that by a suitable choice of e and correspondingly large

m, the right-hand side is arbitrarily small. This proves the theorem

for n > ñ and the complete result follows from the difference equation

for preharmonic functions.

We are grateful to a referee for helpful criticism of the presentation

of this paper. One of us (A.C.A) is indebted to the Commonwealth

Fund of New York for a Commonwealth Fellowship.
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A THEOREM OF PHRAGMEN-LINDELÖF TYPE1

ALFRED HUBER

1. Introduction. In the present paper the Phragmen-Lindelöf theo-

rem for harmonic functions in the formulation of M. Heins [4] shall

be extended to the solutions of the elliptic partial differential equation

.   , "    d2u        k    du
(1.1) £>[„]«£ + _ = 0 (k<l)

i    dx{      xn dxn

(k denoting a real constant). Equation (1.1) appears in several prob-

lems. For an exposition of previous results in the theory of the solu-

tions of (1.1) we refer to a recent paper of A. Weinstein [9].

A theorem of Phragmen-Lindelöf type for the solutions of a rather

general class of elliptic partial differential equations has been proved

by D. Gilbarg [3] and E. Hopf [5]. Because of the singular coeffi-

cient, (1.1) is not contained in this class.

We introduce the following notations, P(xu x2, ■ ■ ■ , xn) denoting

a point in the «-dimensional space:
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1 Sponsored by the Office of Naval Research under contract Nr. N7 ONR-39705.


