A NOTE ON PREHARMONIC FUNCTIONS
A. C. ALLEN AND B. H. MURDOCH

1. Let L be the set of points whose coordinates are rational inte-
gers. Let D be a domain, that is to say, an open connected set, and
let G be the set D-L. A point P(m, n) of G is an interior point if the
four points (m +1, n), (m, n+1) contiguous to P belong to G. Other-
wise P is a boundary point.

A function f(m, n) defined on G is preharmonic if the value of f
at any interior point is the mean of the values of f at the contiguous
points, that is to say

4f(m, n) = flm + 1, n) + f(m — 1, n) + f(m, n + 1)
+f(mv”_ 1)- )

For several decades the subject of preharmonic functions has been
considered by many mathematicians, and the connection with har-
monic functions has long been known. A recent paper by Heilbronn
[1] states a number of theorems which are the analogues of classical
theorems for harmonic functions.

In this note we consider functions which are preharmonic and non-
negative in the half-plane =0 and prove a representation theorem
analogous to that for positive harmonic functions [2], and a theorem
which is the analogue of the Phragmén-Lindelsf type theorem for
positive harmonic functions [3;4].

2. We require the following lemmas:

LemMA 1. If f(m, n) is preharmonic on a bounded domain D, then
f(m, n) is either constant or attains its maximum and minimum on D
on the boundary only.

LEMMA 2. If f(m, n) is preharmonic everywhere and satisfies the in-
equality!
| fm, m) | < A{t +(|m|+|n]|)*}

for all m, n, where k is a positive integer, then f(m, n) is a polynomial
of degree not exceeding k.

Received by the editors April 9, 1952 and, in revised form, April 13, 1953.
1 In what follows, 4 will always represent a positive nonzero number, inde-
pendent of the variables in the context.
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These lemmas are special cases of Theorems 1 and 6 of Heilbronn’s
paper.
LEMMA 3. The function

1 L4
h(m, n) = — f cos mtd*(t)dt,
wJo

where ¢(t) is the smaller root of the equation
() +¢71(t) + 2 cost = 4,

is preharmonic everywhere with the following properties:
(a) (0, 0)=1,
(b) k(m, 0) =0 for m>0,
(c) h(m, n)>0 for n>0,
(d) | h(m, n) —n/x(m*+n?)| <A/n(m*+n?) for all m and positive n.

(a) and (b) follow by inspection. To prove (c), let
M(n) = glb h(m, n)

Im| <o

for n20. It is easily seen that |¢(t)| <1 for 0<t<=7 and so M(n)—0
as n— o and, from the difference equation for preharmonic func-
tions, we have for n=>1

2M(n) 2 Mn+ 1)+ M(n — 1)

and, since M(0) =0, the result follows.
It may be verified that ¢(¢) is a positive decreasing function of ¢
in (0, v) with derivatives of all orders there, that

(1) $'(x) =0, lim ¢'(f) = — 1,
-0+
(2) () =1 — 1+ 12/2 — /12 + O(#*)
as {—0+, and that there exists a real number 7> 0 such that
3) o) S et for0 <t =

Integrating by parts twice in the expression for k(m,n) we have from
(1) and the fact that sin mr =0

whm ) = = ;%Lt"’”"(t)cos mil(n — D{#'0) + 606" (1) ]at,

or, adding w(n®*/m?)h(m, n) to each side,
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m? + n? n n
x -hk(m, n) = — — — f " 2(t)yY(t)cos midt,
m? m2 m?J,

where
vO) = (0 = D{&O)}* + 68" () — ne*().
From the enunciated properties of ¢(f) we may easily show that
v | <a(|n]2+)
for 0<t=w. Thus, by (3), we have for n=1

m2+n2

n n *
x “h(m,n) — —| < A ——f e~ (nt 4 t)dt
m? m? m?J,
4
< —
nm?

and this completes the proof of Lemma 3.

3. THEOREM 1. A necessary and sufficient condition for a funciion
f(m, n) to be non-negative and preharmonic for n =0 is that the numbers

f(m, 0) {m=0, +1, +2, - - . } should be non-negative and satisfy
2 f(m, 0)
<
,E,, 14 m?
and that there should exist a non-negative number D for which
4) f(m, n) = Dn + 2 f(r, O h(m — r, n)
for n=0.

SurFICIENCY. For any large positive N and >0 we have, from
Lemma 3(d),

= m—n (m— 1)+ n
L f(r,0)
where
n(l + r?)

C(m, n) =lub —————
irl<e  (m — )2 4+ n?

and is finite for any fixed m, n. Thus the function defined by (4) is
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an absolutely convergent series of non-negative preharmonic func-
tions and, hence, is itself non-negative and preharmonic for n=0.

NEcEssITY. Let R be a positive integer and define

fR(m’ n) = f(mr n) - i f(rr O)h(m -1, n)-

r=—R

Evidently fr(m, n) is preharmonic in the half-plane =0 and also

R
fr(m, n) = — {max h(m — r, n)} Zf(r, 0).
IrlSR

rs r=—R

From Lemma 3(d) the right-hand side has arbitrarily small modulus
for all points (m, n) of the half-plane lying outside a sufficiently large
circle with centre at (0, 0). Since, by Lemma 1, a preharmonic func-
tion in a finite domain attains its minimum on the boundary and
fr(m,n) =0 for n=0, it follows that for =20, fr(m, n) =0. That is to
say, for =0 we have

f(m’ ”) —3 ﬁ: f('v O)h(m -1, n)’
T=—R
and letting R—
®) fomm) 2 5 fir, OVhm — 7, ).

r=—c0

Next, by Lemma 3(d), there exists a large positive integer N for
which

h(m, N) > 1/(N? + m?)
for all integers m. Thus we have, from (5),

fO.N) 2 3 fr, O h(— 7, N)

2 f(r,0)
= ,_z_:,, r? 4+ N?
1 & f(rn,0)

= — .
- N? ,E,, 14 72

This proves that if f(m, n) is non-negative and preharmonic for n=0,

> f(r,0)
r.z_:., 1+r’<°°

If we write
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fulm, 1) = fm w) — 3> fr, OVhlm — 1, ),

o= —00

it remains to show that f.(m, n) = Dn for some non-negative D. Now
since the series Y. _, f(r, 0)h(m —r, n) is convergent and each term
is non-negative and preharmonic for =0, fo(m, n) also is non-nega-
tive and preharmonic for =0, and, a fortiori, for any integral
t>0, fo(m, n+t) is non-negative and preharmonic for »=0. From

what we have just proved above, we have

2, folr, 9
,_Z_,, 1422

and, a fortiori, fo(m, t) <K(1+m?), where K, is finite for each inte-
gral ¢. Let us assume for the moment that we have shown that

(6) fu(m, n) < An*(1 +m?) < A[1 4+ (| m| + | n])4]

for n>0. We may continue f.(m, #) uniquely throughout the entire
plane by writing

(7 fo(m, —n) = — fo(m, n)

for n>0, and have

< o

(i)  fo(m, n) preharmonic everywhere,

(i) fulm, n) < A[1+ (| m| + | n|)*] everywhere,
(ili) fo(m, 0) = O for all m,

(iv) sign fo(m, n) = sign n for n = 0.

®

Applying Lemma 2 to f.(m, n) it follows from (8)(ii) that f.(m, n)
is a polynomial of degree not exceeding 4. From (8)(iii), # must be a
factor of f.(m, n); since fo(m, n) by (7) contains only odd powers of
n we must have

fo(m, n) = np(m, n?),

where ¢(m, n?) is a polynomial of degree not exceeding 3. Further,
from (8)(iv), ¢(m, n?) is everywhere non-negative, and so of degree
not exceeding 2. We have now shown that

fo(m, n) = n(am? 4 Bn* + ym + 5)

where « and B are non-negative. It may be verified, from the differ-
ence equation, that since f.(m, ) is preharmonic, then a438=0.
Thus a=8=0 and this implies that y=0 and 8§ =20. This completes
the proof that
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fu(m, n) = Dn

for some non-negative D.
It remains to prove (6). Consider the function

12 re(m — M + #) rr sinh o
g(m, n, @, 278) = — D, sin (—'—-sin—-‘.——
I~ 2% 2 sinh 2a,%

where a, is the positive root of the equation

r
9 cosh a, + cos A 2.
27

This function is preharmonic everywhere? and may be shown to
satisfy

0 for m=m + #,
0 for n=0,
g(m, n, m, 21) =
0 for 15|m— s @, n =24,
1 for m =1, n =24
Further,
12 rx sinh
M, 1,7, 20) = — 3 sin? —.—— T
i ym1 2 sinh 2a,%
1 sinh o
z— —

% sinh 2a;%

From (9) we have

w m
cosh a, = 2 — cos — < cosh —»
27 27
and so

(10) <z
Ay -_—
2%

and substituting this in the inequality for g(#, 1, #, 2%) we deduce
that

(11) g(m, 1,7, 27) > A/#,

Let us suppose that (6) is not true. Then there exists an increasing

sequence of integers {n.} , and a corresponding sequence of integers
{m,} such that as y—

* This method of writing preharmonic functions as a sum of products is due to
Phillips and Wiener [5].
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fo(m,, n,)
—_————
n3(1 + m})
We shall suppose first that the integers 7, are even. Consider the func-
tion
f'(m’ n) = fo(m, n) — fu(m, n,)g(m, n, m,, n,).

From (10) and (11) it is apparent that f,(m, #) 20 on the boundary
of the square |m—m,| <n,, 0Sn=n,, and also, by Lemma 1, inside
the square. In particular, we have

fuo(mn 1) 2 feo(mn "')g(mn 1, m,, n,),
and so, by (11),
fultmy, m) < An(1 4 my),

which contradicts our assumption. Similarly, if the sequence is odd,
we may show that

So(m,, n,) < Am(1 + my.

COROLLARY. Suppose f(m, n) to be preharmonic and non-negative in
n20. Then, as n— « subject to the condition am-+bn =0 where a and b
are integers,

f(m, n) — H(m, n) = Dn + Of (m* + n?)~1/2},
where D is a non-negative number and
l ]
H(m, n) = — ,0) —— .
(m, n) - '_f.‘_,”f(f ) P
This result follows immediately from Theorem 1 and Lemma 3(d).

4. If H(re¥) is positive and harmonic in the half-plane 0 <0 <,
then it may be written as [2]

® r sin 0

1
12 H(re®) = dr sin + — .
(12) (re®) +1r —w 72— 2rt cos 0 4 12

dg()

where d is a non-negative number and g(f) is a nondecreasing func-

tion such that
© d,
f 0] <
o 1+ 22

LEMMA 4. If H(re®) is defined by (12), —1<p<1,0<¢<m, n isan
integer and a, & are any positive numbers such that
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H(nde'*) ~ a(nd)?
as n— o, then
H(re't) ~ are
asr— o,
There is no loss in generality in assuming d =0, and so as n— «
L re dg(t)

— ~ a cosec ¢- (nd)r 1,
7 J o (#8)% — 2ndt cos ¢ + 2 * ¢ (nd)

This is easily shown to imply that for x>1
8(=) — g(=2) f" dfg(r) — g(—1)}
s a*+ 2
Further, it will be sufficient to prove that for |r—¢| £1 and r—
I(re'*) — H(oe't) = o(r°).
Now from (12), since d=0,

| H(re*) — H(ae“’)l

< Axr1,

x2

(r—o)sing > (t® — r0)dg(d)
B T —w (12 — 27t cos ¢ + t3)(c% — 20t cos ¢ + #2)
gr) — g(=n) = d{e(®) — g(—0)}
=4 [ r? + f, r2 4 2 ]
< Ap?
= o(r)

asr— o,
The following two lemmas are contained in a paper by Allen and
Kerr [4]:

LEMMA 5. If H(re®) is defined by (12), —1<p<1, and
H(re'*!?) ~ (1 + p)ar* sec px/2
as r— o, then
(%)’ —fg(— =) ~ 2ax'te

as x— o,

3 Actually Allen and Kerr state their results for the case r—0+, but the case
r— is an elementary corollary.
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LEMMA 6. If H(re®) is defined by (12), —1<p<1, and
(13)  H(re®) ~ (1 + p) cosec pr[a sin p(x — 6) + B sin pf]r,

as r— o for two distinct values of 0, then (13) remains true for all values
of 0 and as x— »

g(x) — g(0) ~azx'ts,  g(0) — g(—x) ~ Bx'**.
THEOREM 2. If f(m, n) is non-negative and preharmonic in the half-
plane n=20, —1<p<1, and
(0, n) ~ (1 4 p)a sec px/2-n*
as n— o, then

R
> f(m, 0) ~ 2aRM*e
me—R

as R—w,

THEOREM 3. If f(m, n) is non-negative and preharmonic in the half-
plane n=0, —1<p<1, and
n

f(m, n) ~ (1 + p) cosec px [a sin p (r — arctan —)

m
(14)

+ B sin p(arctan l)] (n? + m2)el
m

as n— o for two distinct rational values of n/m, then (14) remains true
for all rational values of n/m, and as R— « we have

R 0
2 f(m, 0) ~aRe, 3 fim, 0) ~ BR™.

In (12) we define g(x) to be constant in the interval n <x<n-4-1, for
all integers # and with saltus f(», 0) at x=n: then Theorems 2 and 3
follow directly from the corollary to Theorem 1 and Lemmas 4, 5,
and 6.

THEOREM 4. If f(m, n) is non-negative and preharmonic in the half-
plane n=0, and for some finite #=0

lim f(m, ) = «,

m—roo

then we have
lim f(m, n) = as

m—so
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for n=0 where c, is a linear function of n.

f(m, n) is non-negative and preharmonic in the half-plane =%
and so by Theorem 1 has the representation

fm A+ 8) =Dp+ 3 fr, AYb(m — 7, )

for >0, and some non-negative D. From the definition of k(m, n) it
is easily verified that

(15) 3 hm, $) = 1.

Also, from Lemma 3(d), for p>0
(16) h(m, p) < Ap/(m* + p*).

From the hypothesis and Theorem 1, given ¢>0 there exists an inte-
ger N >0 for which

(17) | fom, ) — | < e
for m> N and for which
(18) 'z’:’ Jorn®

— 1472 -
We may now apply (15)-(18) as follows:
| f(m, &+ p) — Dp — a]

< 3 | 1) — a| hem — 1, 9)
N N
§ E f(',ﬁ)h(m"f»?)'l'az h(’”“ﬂ?)

+ 3 /0, #) — a| Kom =, 9)

r=N+1

X fln n) Ap
Aﬁ_Z_Z” PR m——r ENf(r. 7)

+ Apa r-%zlv e + er_%lh(m )
< Apet —2L Z o) + — A,
=< Ape ) f ™ €
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It is apparent that by a suitable choice of € and correspondingly large
m, the right-hand side is arbitrarily small. This proves the theorem
for n> 7 and the complete result follows from the difference equation
for preharmonic functions.

We are grateful to a referee for helpful criticism of the presentation
of this paper. One of us (A.C.A) is indebted to the Commonwealth
Fund of New York for a Commonwealth Fellowship.

REFERENCES

. H. A. Heilbronn, Proc. Cambridge Philos. Soc. vol. 45 (1949) pp. 194-206.

. L. H. Loomis and D. V. Widder, Duke Math. J. vol. 9 (1942) pp. 643-645.

. L. H. Loomis, Trans. Amer. Math. Soc. vol. 53 (1943) pp. 239-250.

. A. C. Allen and E. Kerr, J. London Math. Soc. vol. 28 (1953) pp. 80-89.

. H. B. Phillips and N. Wiener, Journal of Mathematics and Physics vol. 2
(1923) pp. 105-124.

N W N -

PRINCETON UNIVERSITY

A THEOREM OF PHRAGMEN-LINDELOF TYPE!
ALFRED HUBER

1. Introduction. In the present paper the Phragmén-Lindelsf theo-
rem for harmonic functions in the formulation of M. Heins [4] shall
be extended to the solutions of the elliptic partial differential equation

» 3% k ou

+——=0 (k< 1)

1.1 L = —_—
(1.1) k[n] a2 T o

(k denoting a real constant). Equation (1.1) appears in several prob-
lems. For an exposition of previous results in the theory of the solu-
tions of (1.1) we refer to a recent paper of A. Weinstein [9].

A theorem of Phragmén-Lindeldf type for the solutions of a rather
general class of elliptic partial differential equations has been proved
by D. Gilbarg [3] and E. Hopf [5]. Because of the singular coeffi-
cient, (1.1) is not contained in this class.

We introduce the following notations, P(xy, x;, - - - , x,) denoting
a point in the n-dimensional space:

Presented to the Society, February 28, 1953; received by the editors March 30,

1953.
! Sponsored by the Office of Naval Research under contract Nr. N7 ONR-39705.



