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Let Ibea F2-space, let 4> be a group of homeomorphisms of X

onto X, let II: A'X*—*X be the map such that (x, <b)U = x<b

(xEX, <p£4>), and for each x(E.X let II,: $-+X be the map such that

d>Ux = (x, <b)Ii = x<b.

Lemma 1. Let X be a regular Baire space (that is, every countable

intersection of everywhere dense open sets is everywhere dense), let T3 be

a first countable topology on $> such that each Hx (xEX) is continuous,

let x0(E.X, let <££4>, and let U be a neighborhood of Xo4>. Then there

exist a neighborhood N of <f> and a nonvacuous open subset V of X such

that (VXN)UCU.

Proof. There exists an open neighborhood W of xgcb such

that clsWCZ U, where els W denotes the closure of W. Let

[ATjfc|fe = l, 2, • • • ] be a neighborhood base at <p. Let Ck = [ac|x£Ar

and ATjJLCcls W]. Then Ck = D*e^* (cIs W)<f>~1 which is closed. More-
over W<b~l C\)k-i Ck as follows. Let x£W<p_I. Then x<f>EW, i.e.

4>UxEW. Thus there exists k such that ATJItCWCcls W. Hence

xECk. Now from WlCUr_i C* it follows that int U»"-! Ck9*0 and

there exists k such that int Ck9£0. Let 7=int Ck and N = Nk. Then

(VXN)ILCU. The proof is completed.
The group $> is rigid provided that if 7 is a filter base on <P and if

x, y, zEX are such that ¡cj—»z and y7~^z, then x = y. Rigidity may

be characterized as follows. The group $ is rigid if and only if given

x, y, z£X such that X9^y there exists a neighborhood U of z such

that if (?£$ and x<b(E.U, then y</»£t7. Thus the notion of rigidity

used here is equivalent to the one attributed to Hubert by Zippin

[3]. For emphasis one might refer to the above concept as pointwise

rigidity in contrast to uniform rigidity which might be defined as

follows, provided that X is a uniform space. The group <£ is uni-

formly rigid provided that if x, y£X such that X9*y, then there exists

an index a of X such that X(p(¡.y<ba for all #£$>. It can be shown

that in case X is compact the notions are equivalent.

Theorem 1. Let X be locally compact, let d> be abelian and rigid, let

15 be a first countable topology on $> which makes each Hx (x(£X) con-

tinuous, and let x0(E.X be such that els (xo$) = X. Then II is continuous

at (xo, 4>) for all <p£$.
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Proof. Let <f>E$, let zA be a countable neighborhood base at <b,

and let y be a filter base on X such that y—>x0. It is required to show

that (7X<vf)n—+xaq>. Let 33 be the neighborhood base of xtf consist-

ing of compact neighborhoods only and let UE'B- By Lemma 1 there

exist AE*A and a nonvacuous open subset W of X such that

iWXA)UCU. Since els (xo$) =X, there exists \puE$ such that Wtyu

is a neighborhood of *<>. The group d> being abelian, we conclude that

iWlruXA)ILC Uypv. There exists FEy such that FEWxpu and hence

(FX^nCC/^tf. Since U is compact, so is U\pu and hence (7X<vi)n

has an adherent point in Ufa- To show (J X<vf)n—*jco# it suffices to

show that the only possible adherent point of iyXvi)IL is xatb. Let y

be adherent to (7Xe/i)n. Then yEtyu and yp^EU. Set Gv

= W\ VE® and VC U]. Then £= [Gt/| UE<B] is a filter base on $
such that yÇ—*xoq>. But the relation (Wfy£7X.4)nCLV'<7 shows that

x<rf>EUipu and consequently that Xo<bÇ^>Xo<f>. Hence by the rigidity

of $>, we conclude that y = x0. The proof is completed.

Corollary 1. Under the same assumptions as in Theorem 1 we con-

clude that n is continuous on xa$ X$.

Corollary 2. Let X be a first countable locally compact T2-space

with an abelian group structure such that multiplication is unilaterally

continuous. Then multiplication is bilaterally continuous.

Lemma 2. Let X be a T2-space with a group structure such that

multiplication is continuous and let H be a compact subset of X. Then

H~x is closed.

Proof. Let J be a filter base on 77-1 such that y~*xEX. It is

enough to show that xEH-1. Let V be an ultra-filter on 77_1 such that

LOy. Then V—>x and V~l is an ultra-filter on 77. Consequently

V~l—>yEH and VU-1—+xy which must be the identity since X is T2.

Thus x=y_1G77_1. The proof is completed.

Theorem 2. Let X be a separable first countable locally compact

T2-space with an abelian group structure such that multiplication is uni-

laterally continuous. Then X is a topological group.

Proof. By Corollary 2 it suffices to show that the map x—>x_1 is

continuous. To do this it is sufficient to show that if F is a neighbor-

hood of the identity e, then int V~l9*0, as follows. Let

(xn I n = 1, ■ ■ • ) be a sequence such that xn—>e and let U be a compact

neighborhood of e. Since int U~l9*0 by assumption, there exist

y EX and an integer N such that n> N implies xnEU~ly~l or

x^EyU for n>N. Since U is compact, we have xn—>Xo for some
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XoEX. But multiplication being bilaterally continuous we have xa = e.

Consequently we need only show that int V~19£0 for any compact

neighborhood V of e. Since X is separable there exists a countable

subset E of X such that els E = X. Moreover EV~1 = X. But by

Lemma 2, F_1 is closed since F is compact. Consequently int V~19£0

since X is a Baire space. The proof is completed.

Corollary 3. Under the same assumptions as in Theorem 2, we

have that X is metrizable.

Lemma 2 and Theorem 2 are closely related to a result of Mont-

gomery's [2] which dealt with similar questions in complete metric

spaces. An interesting question along these lines is whether the hy-

pothesis of first countability can be removed in Lemma 2.

For the remainder of the paper we suppose that X is a separated

uniform space and that each Iix (xÇ£X) is one-to-one.

The proofs of Lemmas 3 and 4 are straightforward and will there-

fore be omitted.

Lemma 3. There exists a (necessarily unique) topology 15 of & which

makes each îlx (xEX) homeomorphic if and only if each ILJ1!!,,: x$

—>y$> (x, y EX) is homeomorphic. If the topology 15 exists, then 15 is the

point-open topology on i>.

Lemma 4. Let X be a minimal orbit-closure under <P, that is, let xEX

imply els (:tfï>) = X. Then <£ is equicontinuous if and only if the restric-

tion to x& of $ is equicontinuous for each xEX.

The group $> is said to be finitely controlled provided that for every

<p£d> and every index a of X there exist an index ß of X and a finite

subset E of X such that if ^£i> and if (xty, xd>) £0 for all x££, then

(xip, x<t>)E.<x for all xEX. In other words, <P is finitely controlled if

and only if the topology on <3? of pointwise convergence coincides with

the topology on d> of uniform convergence. Notice that no mention is

made of the corresponding uniformities on «I?, in this characterization.

Lemma 5. Let X be a minimal orbit-closure under d> and let each

LLJTI,, (x, yEX) be homeomorphic. Then $ is rigid.

Proof. Let 7 be a filter base on f> and let x, y, z£X be such that

x7~>z and y7~*z. Since els (zd>)=X, there exists a filter base Q on

$ such that xQ-^x and yÇ—*x. Therefore yÇ= (xC^ILjTI,,—»xELj'n,
= y and x=y. The proof is completed.

Theorem 3. Let Xbea minimal orbit-closure under <P, let d> be abelian

and finitely controlled, and let each ILJ1!!,,^, yEX) be homeomorphic.
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Then 4> is equicontinuous.

Proof. Let xEX. By Lemma 4 it suffices to show that the restric-

tion to x4> of $ is equicontinuous. To this end let q>E$ and let a

be an index of X. We need to find a neighborhood U of xq> such that

( Uf^x&WExqxl'a for all^G^- Since^ is finitely controlled, there exists

an index ß of X and a finite subset E of X such that if 6E& and if

iyd, yq>)Eß for all yEE, then (y0, y<£)£a for all y EX. There exists

a neighborhood U of xcb such that iUi^x^^^IlyEy^ß for yGTi.

This is the required neighborhood as shown by the following. Let

\pE® and let zEUf~\x&. Then z — xd for some #£<£. Since

(C/nx*)n;1ni/Cy^i3 for all yGTi, it follows that yd = zU;1IlvEy<bß for

all yGTi. Therefore yOEyba for y EX. Thus zty = xö^ = xij/0 Ex&<ba

= xd>\¡/a; i.e. iUf^x&WExQTpa. The proof is completed.

Theorem 4. Lei X be a minimal orbit-closure under «i», /eí X be first

countable compact, let 3> 6c abelian, and let each ILjTIy ix, yEX) be

homeomorphic. Then <£> is equicontinuous.

Proof. By Theorem 3 it suffices to show that 4> is finitely controlled.

Since X is compact this is equivalent to showing that II is continu-

ous when $> is provided with the point-open topology. By Lemma 3

the point-open topology on $ is merely the inverse image topology

induced on 4> by the map Hx where xEX, and is consequently first

countable. Lemma 5 shows that $ is rigid, and hence by Theorem 1,

n is continuous. The proof is completed. The theory of uniform

spaces together with Theorem 4 shows that under the above assump-

tions X is metrizable. It would be interesting to find out whether X

remains metrizable if the condition that ILjTI,, (x, yEX) be homeo-

morphic is deleted. Theorem 4 generalizes a result due to Gottschalk

[1].
In connection with the concept of rigidity used in this paper one

might mention the notion of regional rigidity. The group <ï> is re-

gionally rigid provided that if x, y, zEX such that X9*y, then there

exist neighborhoods U, V, Woix,y, 3 respectively such that if cbE®

and Wi^U<f>9*0 then WC\V<p = 0. This is what Zippin refers to as

Axiom H. The latter part of the paper may be conveniently sum-

marized in the following theorem.

Theorem 5. Let X be a first countable compact T2-space which is

also a minimal orbit-closure under the abelian group 4>. Then the fol-

lowing statements are pairwise equivalent.

1. The group 3> is regionally rigid.

2. The maps U^íl^ix, yEX) are homeomorphic.
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3. The group 4> is equicontinuous.

Proof. Statement 2 implies statement 3 by Theorem 4. Now

assume statement 3 holds. Let xEX. Then since els (x$)=X, the

point-open topology on $ relative to X coincides with the point-

open topology on $> relative to x$ which is merely the inverse image

topology on 4> induced by the map II». Thus statement 2 holds.

Now assume statement 1. Let xEX and let U be an open neigh-

borhood of x. If y £ U' = X — U, then there are neighborhoods Vy of x

and Wv of y such that if <p£$ and VyC\ Vy4>j¿0, then VVC\ Wy<p = 0.
Since U' is compact, there exists a finite subset F of U' such that

U„efTF„D^'- Let F=n„e?F1/. Then if 0£d> and V<f>nU^0 then
V<p(~\U' = 0. Hence, because X is a minimal orbit-closure, we may

conclude statement 3.

Finally, assume statement 3. Let x, y, zEX such that X9£y. There

exists an index a oi X such that (x, y)(£ct. Since X is compact, <P is

uniformly equicontinuous. Hence there exists an index ß of X such

that (u, v)Eß and <p£$> imply (wp, w£)£a. Let y be a symmetric

index of X such that y4£/8. Set U=xy, V=yy, and W=zy. A simple

computation shows that U, V, and W have the property required in

the definition of regional rigidity. The proof is completed.
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