CONTINUITY AND HOMEOMORPHISM GROUPS
ROBERT ELLIS

Let X be a Ty-space, let ® be a group of homeomorphisms of X
onto X, let II: XX®—X be the map such that (x, ¢)II=x¢
(xEX, pE®P), and for each xEX let I1,: —X be the map such that
¢H== (x’ ¢)H =x¢.

LeEMMA 1. Let X be a regular Baire space (that 1is, every countable
inlersection of everywhere dense open sets is everywhere dense), let  be
a first countable topology on ® such that each I1. (xEX) is continuous,
let xoEX, let <P, and let U be a neighborhood of xup. Then there
exist a neighborhood N of ¢ and a nonvacuous open subset V of X such
that (VX N)IICU.

Proor. There exists an open neighborhood W of x¢ such
that clsWCU, where cls W denotes the closure of W. Let
[Ni|k=1, 2, - - - ] be a neighborhood base at ¢. Let Ci=[x|xEX
and NVII,Ccls W]. Then Ci=N4en, (cls W)¢~! which is closed. More-
over Wo—1CU;., Ci as follows. Let xEW¢~1. Then xpEW, i.e.
¢lI.EW. Thus there exists 2 such that NJI,CWCcls W. Hence
£ & Ci. Now from W¢~'CU;., C; it follows that int U, Ci= & and
there exists k such that int G, . Let V=int C; and N=N,. Then
(VXN)YICU. The proof is completed.

The group ® is rigid provided that if ¥ is a filter base on ® and if
x, y, 3€X are such that x¥—sz and y¥—s, then x=y. Rigidity may
be characterized as follows. The group @ is rigid if and only if given
%, ¥, 2€X such that x>y there exists a neighborhood U of z such
that if §EP and x9S U, then yp& U. Thus the notion of rigidity
used here is equivalent to the one attributed to Hilbert by Zippin
[3]. For emphasis one might refer to the above concept as pointwise
rigidity in contrast to uniform rigidity which might be defined as
follows, provided that X is a uniform space. The group ® is uni-
formly rigid provided that if x, y E X such that xs£y, then there exists
an index a of X such that x¢p&ypa for all &P. It can be shown
that in case X is compact the notions are equivalent.

THEOREM 1. Let X be locally compact, let ® be abelian and rigid, let
G be a first countable topology on ® which makes each I, (xEX) con-
tinuous, and let xoE X be such that cls (x®) =X. Then II s continuous
at (xo, @) for all pED.
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PRrOOF. Let ¢ <P, let <4 be a countable neighborhood base at ¢,
and let ¥ be a filter base on X such that 7—x,. It is required to show
that (¥ XA)[I—xep. Let B be the neighborhood base of xo consist-
ing of compact neighborhoods only and let UEB. By Lemma 1 there
exist A€4 and a nonvacuous open subset W of X such that
(WXAIICU. Since cls (x¢®) =X, there exists Yy €®P such that Wiy
is a neighborhood of xo. The group ® being abelian, we conclude that
(WY X A)IIC UYy. There exists FEF such that FC Wiy and hence
(FXA)IC Uyy. Since U is compact, so is Uy and hence (FXA)I
has an adherent point in Uyy. To show (¥ XeA)II—x it suffices to
show that the only possible adherent point of (¥ XA)II is xop. Let y
be adherent to (FXA)I. Then yEUYy and wW'€U. Set Gy
=[y7!| VEB and VCU]. Then G= [Gy| UEB] is a filter base on &
such that yG—xwp. But the relation (Wyy XA)IC Uy shows that
xwp & Uyy and consequently that xepG—xep. Hence by the rigidity
of ®, we conclude that y=x,. The proof is completed.

COROLLARY 1. Under the same assumptions as in Theorem 1 we con-
clude that 11 1s continuous on x,® XP.

COROLLARY 2. Let X be a first countable locally compact Ts-space
with an abelian group structure such that multiplication is unilaterally
continuous. Then multiplication is bilaterally continuous.

LEMMA 2. Let X be a T,-space with a group structure such that
multiplication is continuous and let H be a compact subset of X. Then
H™1 45 closed.

Proor. Let ¥ be a filter base on H™! such that f—x&EX. It is
enough to show that x€ H-L Let U be an ultra-filter on H-! such that
VDF. Then U—x and U! is an ultra-filter on H. Consequently
U'—yEH and VU-'—>xy which must be the identity since X is T5.
Thus x=y~'€H-'. The proof is completed.

THEOREM 2. Let X be a separable first countable locally compact
To-space with an abelian group structure such that multiplication is uni-
laterally continuous. Then X 1s a topological group.

Proor. By Corollary 2 it suffices to show that the map x—x~! is
continuous. To do this it is sufficient to show that if V is a neighbor-
hood of the identity e, then int V-!'>£¢¥, as follows. Let
(x.|n=1, - - - ) be a sequence such that x,—e and let U be a compact
neighborhood of e. Since int U~!'# & by assumption, there exist
yEX and an integer N such that >N implies x,€E U 'y~! or
x;'EyU for n> N. Since U is compact, we have x,,—x, for some
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x9EX. But multiplication being bilaterally continuous we have xo=e.
Consequently we need only show that int V-!3 & for any compact
neighborhood V of e. Since X is separable there exists a countable
subset E of X such that cls E=X. Moreover EV-!=X. But by
Lemma 2, V-!is closed since V is compact. Consequently int V-1 &
since X is a Baire space. The proof is completed.

CorOLLARY 3. Under the same assumptions as in Theorem 2, we
have that X is metrizable.

Lemma 2 and Theorem 2 are closely related to a result of Mont-
gomery’s [2] which dealt with similar questions in complete metric
spaces. An interesting question along these lines is whether the hy-
pothesis of first countability can be removed in Lemma 2.

For the remainder of the paper we suppose that X is a separated
uniform space and that each I, (xEX) 1s one-to-one.

The proofs of Lemmas 3 and 4 are straightforward and will there-
fore be omitted.

LEMMA 3. There exists a (necessarily unique) topology G of ® which
makes each 11, (xEX) homeomorphic if and only if each II;'II,: x®
—y® (x, yEX) 1s homeomorphic. If the topology G exists, then G is the
point-open topology on P.

LEMMA 4. Let X be a minimal orbii-closure under ®, that is, let xEX
imply cls (x®) =X. Then ® 1s equicontinuous if and only if the restric-
tion to x® of ® is equicontinuous for each xX.

The group @ is said to be finstely controlled provided that for every
¢ EP and every index a of X there exist an index 8 of X and a finite
subset E of X such that if y &P and if (xy, x¢) EB for all x€ E, then
(x¢, xp) Ea for all xEX. In other words, P is finitely controlled if
and only if the topology on ® of pointwise convergence coincides with
the topology on ® of uniform convergence. Notice that no mention is
made of the corresponding uniformities on ®, in this characterization.

LeEMMA S. Let X be a minimal orbit-closure under ® and let each
0710, (x, yEX) be homeomorphic. Then ® is rigid.

Proor. Let ¥ be a filter base on ® and let x, y, 2EX be such that
xJ—z and yJ—z. Since cls (2) =X, there exists a filter base G on
® such that xG—x and yG—x. Therefore yG'= (xG)II; "I, —xII; 11,
=4 and x=1y. The proof is completed.

THEOREM 3. Let X be a minimal orbit-closure under ®, let ® be abelian
and finitely controlled, and let each TI;'TL,(x, yEX) be homeomorphic.
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Then ® is equicontinuous.

Proor. Let x€X. By Lemma 4 it suffices to show that the restric-
tion to x® of ® is equicontinuous. To this end let ¢ &P and let a
be an index of X. We need to find a neighborhood U of x¢ such that
(UNx®)yY Cxgifa for ally €®. Since P is finitely controlled, there exists
an index B of X and a finite subset E of X such that if 0&E® and if
(9, y¢) EB for all yEE, then (¥, yp) Ea for all yEX. There exists
a neighborhood U of x¢ such that (UNx®)II;'II,Cy¢B for yEE.
This is the required neighborhood as shown by the following. Let
YEP and let z2&€UNxP. Then z=x0 for some HE&P. Since
(UNx®)II; ', CyéB for all yEE, it follows that 9 = 2117 'TI, E y¢p for
all yEE. Therefore y¥9Eypa for yEX. Thus 2 =2 = ExYda
=xpPa; i.e. (UNxP)WWCxdpa. The proof is completed.

THEOREM 4. Let X be a minimal orbit-closure under ®, let X be first
countable compact, let ® be abelian, and let each 7', (x, yEX) be
homeomorphic. Then ® is equicontinuous.

ProoF. By Theorem 3 it suffices to show that ® is finitely controlled.
Since X is compact this is equivalent to showing that II is continu-
ous when ® is provided with the point-open topology. By Lemma 3
the point-open topology on ® is merely the inverse image topology
induced on ® by the map II, where x€X, and is consequently first
countable. Lemma 5 shows that & is rigid, and hence by Theorem 1,
I is continuous. The proof is completed. The theory of uniform
spaces together with Theorem 4 shows that under the above assump-
tions X is metrizable. It would be interesting to find out whether X
remains metrizable if the condition that II;'II, (x, y&X) be homeo-
morphic is deleted. Theorem 4 generalizes a result due to Gottschalk
[1].

In connection with the concept of rigidity used in this paper one
might mention the notion of regional rigidity. The group ® is re-
gionally rigid provided that if x, y, 3€X such that x>y, then there
exist neighborhoods U, V, W of x, y, 2z respectively such that if ¢ €
and WNU¢= then WNV¢o=F. This is what Zippin refers to as
Axiom H. The latter part of the paper may be conveniently sum-
marized in the following theorem.

THEOREM 5. Let X be a first countable compact Te-space which 1s
also a minimal orbit-closure under the abelian group ®. Then the fol-
lowing statements are pasrwise equivalent.

1. The group ® is regionally rigid.

2. The maps N;'I1, (x, yEX) are homeomorphic.
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3. The group ® is equicontinuous.

Proor. Statement 2 implies statement 3 by Theorem 4. Now
assume statement 3 holds. Let x€X. Then since cls (x®) =X, the
point-open topology on ® relative to X coincides with the point-
open topology on & relative to x® which is merely the inverse image
topology on ® induced by the map II,. Thus statement 2 holds.

Now assume statement 1. Let ¥€X and let U be an open neigh-
borhood of x. If y& U’ =X — U, then there are neighborhoods V, of x
and W, of y such that if &P and V,N\V =, then V,\W,p=.
Since U’ is compact, there exists a finite subset F of U’ such that
U,erW,DU'. Let V=,erV,. Then if $EP and VN U= then
VéN U’ = . Hence, because X is a minimal orbit-closure, we may
conclude statement 3.

Finally, assume statement 3. Let x, ¥, 2€ X such that x>y. There
exists an index « of X such that (x, y)&a. Since X is compact, ® is
uniformly equicontinuous. Hence there exists an index 8 of X such
that (u, v) &€ and ¢EP imply (up, vp) Ea. Let v be a symmetric
index of X such that *CpB. Set U=xvy, V=4yvy, and W=zy. A simple
computation shows that U, V, and W have the property required in
the definition of regional rigidity. The proof is completed.
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