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1. Let Xix, y) and Y(x, y) be of class C in the xy-plane M and

periodic with period 1 in each variable. The equations

dx dy
(1) - = X(x, y), -j- = Y(x, y)

dt dt

define a flow Fm in M and also a flow Fa in the torus Q obtained

from M by identifying (x, y) with (x', y') whenever x — x' and y—y'

are integers. According to a classical theorem, these flows are area

preserving if and only if

dX      dY
(2) -+-= 0.

dx       dy

A statement in a recent paper by Saito [6] suggested the following

question: Does there exist on the torus an analytic, area preserving,

ergodic flow which has a stationary point? The purpose of this note

is to describe an elementary example of such a flow, and to discuss

some properties of a topological class of flows to which it belongs.

Stepanoff [7] (cf. also [4, pp. 395-400, 506-507]) considered the
flows defined by equations of the form (1) where Y=aX, a is an irra-

tional number, and X is periodic, non-negative, continuous, satisfies

a Lipschitz condition in x and y, and vanishes at one and only one

point of the torus. He showed that these flows are metrically transi-

tive with respect to the invariant Borel measure

C C      dxdy
(3) ß(E) = j       —~- (E C 0).

J JE X(x, y)

In general, p(Q) may be either finite (e.g., X = (sin2 xoc+sin2 try)112)

or infinite (e.g., X = sin2 Trx+sin2 7ry). But if X is required to be of

class C, then p(Q) = œ. Hence a flow of this kind will not serve to

answer our question. Nevertheless, the example we are about to de-

scribe is in many respects similar.

2. Consider the flows Fm and Fa defined by (1) where

X = <*(1 - cos 2r(x - y)) + (1 - a)(l - cos 2iry),

Y = o(l - cos 2t(* - y))
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and where a is an irrational number between 0 and 1. Evidently X

and Y are analytic, periodic, and satisfy (2). Hence the flows F m and

Fa are analytic [l, p. 12] and area preserving. Moreover, X= Y=0

whenever both x and y are integers, and X>0, F^O, elsewhere. In

view of (2), the expression — Ydx+Xdy is an exact differential,

which generates the integral function

/        sin2xy\ / sin2*(*-y)\
H = a-*)(y——ya{*-y-_—y

The orbits of Fm are therefore contained in the curves of tne family

(5) Hix, y) = c (- oo < c < oo).

For each value of c, this equation determines y as a single-valued

function of x. The curve passes through the integral point («, m) if

and only if c = m — na, hence no curve can pass through more than one

such point. Because X > 0 at all other points it follows that the orbits

of FM are precisely the curves of the family (5), except that when

c = m — net the curve is composed of three orbits: the stationary point

in, m), and the orbits of the two motions asymptotic to in, m) as /

tends to + oo and — oo respectively.

Each curve of the family (5) determines y as an analytic function

of x. This is clear at non-integral points, since there Hv = X > 0. For

the rest it is sufficient to consider the equation H=0. By taking a

cube root this equation can be put in the form

(6) ßygi2ry) = (x - y)g(2*(x - y)),

where ß=(ii—a)/a)m and gix) denotes the real cube root of

ix—sin x)/xz, which is analytic and positive on the real axis. Equa-

tion (6) therefore defines a real analytic curve, whose slope at (0, 0)

is (1+ß)-1. It should be noted that although each curve of the family

(5) is analytic, the slope considered as a function of x and y is dis-

continuous at integral points. In fact, it assumes all values between

0 and 1 in every neighborhood of such a point. Closer inspection re-

veals that when c is small but not zero the curve (5) exhibits a small

"bump" as it passes near the origin, a behavior which might be an-

ticipated since the origin is stationary and the flow incompressible.

In order to study this flow more conveniently, and in particular to

determine all the finite invariant measures of Fa, let us subject the

plane M to the transformation S defined by

a 1 — a
X = x,       y  - y -\-sin 2x(ac — y)-sin 2iry.
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Each line parallel to the y-axis thereby undergoes a monotone in-

creasing transformation into itself, hence 5 is 1:1 as well as continu-

ous. It follows (from invariance of region) that S~l is continuous. At

nonintegral points S~l is indeed analytic, since there the Jacobian

( = X) of S is different from zero, but at integral points dy/dy' be-

comes infinite.

Observe that if S(x, y) = (x', y') then Six+n, y+m) = ix'+n,

y'+m), hence 5 also defines a topological transformation of ß onto

itself. Under S, Fm and T'a are transformed into topologically equiva-

lent flows, the curve 77(x, y)=c goes over into the straight line

y'—ax' = c, and the equations (1) are transformed into

dx1 dy'

— = *>(*', y').     -f- = «*(*'. /),
dt dt

where $(#', y')=Xix, y). This system is of the type considered by

Stepanoff, except that $ fails to satisfy a Lipshitz condition, in fact,

<IV becomes infinite at integral points. However, this flow and those

considered by Stepanoff belong to the slightly more general class we

are about to consider.

3. By a Stepanoff flow we shall mean a one-parameter continuous

group F: P-^TtP (—«><<<<») of transformations of the torus ß

onto itself such that (i) there is one and only one stationary point Po,

and (ii) the points of each orbit satisfy an equation of the form

y—ax = constant, where a is an irrational number corresponding to

F.
Note that (i) and (ii) imply that the orbits of F coincide with the

curves y—ax = constant, except that the curve through P0 is the

union of three orbits of F.

Two flows P—>7\P and P-+StP in ß are said to be topologically

equivalent if there exists a homeomorphism / of ß onto itself such that

TtfiP) =fiStP) for all P and t.

Theorem 1. If a flow F: P—*TtP with stationary point Po is topo-

logically equivalent to a Stepanoff flow, and if F admits a normalized

invariant Borel measure p for which piPo) =0, then p is unique and F

is ergodic with respect to p.

Proof. Since the properties in question are topologically invariant

we may assume that F is a Stepanoff flow and that Po corresponds

to the origin in M. Suppose there exists an invariant Borel measure

p with p(ß) = 1 and piPo) =0. Let ßi denote the complement of the

three exceptional orbits in ß, then p(ßi) = l. Let C be the circle in

ß corresponding to the y-axis in M, and let R denote the irrational
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rotation of C corresponding to the translation (0, y)—»(0, y+a) of

the y-axis. Put T = CHßi, then for each P£T there is a least positive

number t=<b(P) such that TYP£r. Note that <b(P) is continuous on

T, that it has a positive lower bound 2A, say, and that T^p)P=RP on

T. For each Borel set BQT let

B* = [TtP:PEB, 0 < I ^ h\.

Observe that the sets B* are disjoint whenever the sets 2?,- are, and

that niT*)>0, since U+."_„ TnhT* = Qi. Hence the formula

ß(B*)
miß) = ^—-

M(r*)

defines a normalized Borel measure in T, and m can be extended over

C by defining m(C—T)=0. To show that m is invariant under 22,

take 0 <€ < h and put

Bi = {P:P EB,(i~ l)t < 4>(P) á i*) (i = 1, 2, • - • )•

Then
00 00

m(2?*) = Z^i*) = EM(Fi«5i*)a/x({F(P:P£225,0<<<A + t}).
t-i <—i

Letting €—»0 it follows that m(B) £m(RB). The reverse inequality is

obtained by replacing B by T—B. Since it is known that Lebesgue

measure is the only normalized Borel measure in C invariant under R,

it follows that R is ergodic with respect to m. If E is any Borel subset

of ß invariant under F, let B = E(~\Y and B' = T-E. Then B and B'

are invariant under 2?, hence n(B*)p(B'*) =m(B)m(B') = 0, and since

23* and 2J'* sweep out EHßi and ßi —£ respectively it follows that

ju(2s)/*(ß—22) =0, therefore F is ergodic with respect to ¡x. The

uniqueness of ju follows from the observation that if there were two

distinct ergodic measures in fii their arithmetic mean would be non-

ergodic.

Theorem 1 implies that the flow Fa considered in §2 is ergodic with

respect to plane measure in ß, and that it has no other ergodic Borel

measure except the trivial measure confined to the origin.

The following theorem shows that for any Stepanoff flow the space

of normalized invariant measures (a convex subset of the space of

bounded linear functionals on continuous functions on ß) consists

either of a single point or of a segment joining two points.

We recall that a point P is called quasi-regular [3] if the "time

average"/*(P) = lim^M/i(P) exists for every continuous function/

on ß, where
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UiP) =-( ' fiTTP)dr.
t J o

Theorem 2. If a flow F: P-^TtP with stationary point P0 is topo-

logically equivalent to a Stepanoff flow, then either (A) or (B) applies:

(A) The only normalized Borel measure invariant under F is the

trivial measure pofor which po(Po) = 1. In this case every point is quasi-

regular, and for any continuous function f on ß, ftiP) converges uni-

formly on ß to /(Po) as t—» ».

(B) F has one and only one normalized ergodic Borel measure p9*po,

p is the only invariant Borel measure for which p(ß) = 1 and p(Po) =0,

and every finite invariant Borel measure is a linear combination of p0

and p. In this case the quasi-regular points constitute a set of first cate-

gory dense in ß.

Proof. If there is a unique normalized invariant Borel measure,

then every point is quasi-regular, as was shown by Kryloff and Bo-

goliouboff [3, Theorem XV]. The uniformity of the convergence of

ftiP) in this case has been shown for discrete flows in a previous

paper [S, (5.1)]. The same reasoning applies here, and the limit is

ffdp0=fiPo). In case there is a normalized invariant measure other

than po the first three assertions of (B) follow from Theorem 1, and it

only remains to characterize the set Q of quasi-regular points.

Choose a continuous function / and numbers a and b such that

/(Po) < a < b <ffdp. Let

Ex =   n    U   {P:/i(P) <«},
n—1     On

E2 =   ñ    U   \P:ftiP)>b).
n-l     On

Then Ex and E2 are G» sets. Ex is dense since it contains the orbit

of the motion that tends to P0 as <—> ». £2 is dense since it is invari-

ant and since p(£2) = l, by the ergodic theorem. Evidently QCß

— iExC\E2), hence Q is of first category. That Q is dense follows from

the fact that it is invariant and that piQ) = 1 [3, Theorem II].

We remark that, in case (B), ß is the orbit closure of a non-quasi-

regular point, since Q is of first category and every orbit except P0 is

dense. Dowker [2] has shown, conversely, that Q is of first category

in any compact dynamical system in which the orbit of some point not

in Q is dense.

Theorem 2 generalizes results obtained by Stepanoff. Under the

regularity conditions which he assumed a flow comes under case (B)
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whenever the measure defined by (3) is finite, and under case (A)

otherwise. It should be noted that the last assertion of (A) implies

that the time probability of sojourn of any point in any neighborhood

of Po is equal to 1, a property which Stepanoff established by direct

calculation. Our reasoning shows in addition that the limit is ap-

proached uniformly with respect to P. Theorem 2 shows that in case

(B) the set of all such points, other than P0, has invariant measure

zero and is of first category. It would be interesting to know whether

it includes anything except the orbit asymptotic to Po.

It is easy to see that any Stepanoff flow is permanently regionally

transitive, that is, for any two neighborhoods U and V there is a

number to such that TtUr\V is nonempty for all )/| >/o. In view of

this and Theorem 1 it is natural to conjecture that every Stepanoff

flow of type (B) is strongly mixing, but we have not been able to

prove this.
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