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It is apparent that by a suitable choice of e and correspondingly large

m, the right-hand side is arbitrarily small. This proves the theorem

for n > ñ and the complete result follows from the difference equation

for preharmonic functions.

We are grateful to a referee for helpful criticism of the presentation

of this paper. One of us (A.C.A) is indebted to the Commonwealth

Fund of New York for a Commonwealth Fellowship.
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Princeton University

A THEOREM OF PHRAGMEN-LINDELÖF TYPE1

ALFRED HUBER

1. Introduction. In the present paper the Phragmen-Lindelöf theo-

rem for harmonic functions in the formulation of M. Heins [4] shall

be extended to the solutions of the elliptic partial differential equation

.   , "    d2u        k    du
(1.1) £>[„]«£ + _ = 0 (k<l)

i    dx{      xn dxn

(k denoting a real constant). Equation (1.1) appears in several prob-

lems. For an exposition of previous results in the theory of the solu-

tions of (1.1) we refer to a recent paper of A. Weinstein [9].

A theorem of Phragmen-Lindelöf type for the solutions of a rather

general class of elliptic partial differential equations has been proved

by D. Gilbarg [3] and E. Hopf [5]. Because of the singular coeffi-

cient, (1.1) is not contained in this class.

We introduce the following notations, P(xu x2, ■ ■ ■ , xn) denoting

a point in the «-dimensional space:
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77 = E[P\ xn> 0], HT = Hn E\P £ x\ < /I,

D = E[P\ xn = 0], Dr = D Pi ¿Ti3 £ x* < /I,

S = 77n£|P  £*< = il,    5r = flAE|Jtï,!= /].

(?(£i> ?2> • • ' i £n) shall exclusively be used for a point on 5r,

(?*(£i/r> &A» ■ • ' i £nA) for its radial projection on 5. <¡> shall denote

the angle between OQ (or OÇ*) and the hyperplane D; it is defined

by the relation sin <p = £„/r.

2. Theorem. Let u be a solution of Lk[u] =0 (&<1), defined in II

and satisfying at the boundary

(2.1) lim sup u(P) g0 (P EH; M ED).
P-M

It follows that
(a) the limit a = limr,„ m(r)/rl~k, where m(r) =suppesr u(P), always

exists (finite or infinité),

(b) a^O,
(c) u gax*-t feoZds throughout 77,

(d) î/ t» (c) iÄe equality is attained in at least one point of 77, then

Remarks. This theorem has first been proved for the case of har-

monic functions in the plane by M. Heins [4], who thus had solved a

question raised by L. Ahlfors [l], (The three-dimensional case has

later been treated in an analogous way by H. Keller [7].)

Although the result is well known, the following proof might also

be of interest in the particular case of harmonic functions (k = 0),

since it differs in some respects from the one given by M. Heins.

For i^l a theorem of this type cannot be expected to hold, as

the examples w = log xn (k = l) and u= —x},~*+const. (k>l) show.

3. Proof. Let f(Q) be defined and continuous on the boundary of

77r, vanishing on Dr. It has been shown in [6] that the function

!_» (r2 - p2)T((2 - k + n)/2)  Ç
v(P) = xi--^-^-      "      I    tJ(Q)dSr(Q)

tt"'2T((2 -  k)/2) Jsr

sin1-* idt

/J 0 [[PQ]2 + 2*n£»(l - cos/)]^-^"»8
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where p2= £? x2 and [P(?]2 = £? (*<-&)*, is the solution of (1.1)

in Hr, which assumes the boundary values f(Q).

Now, let f(Q) be an arbitrary majorant of u on Sr. From the maxi-

mum principle we conclude that u(P) is majorized by v(P) in Hr.

For fixed P, as Q tends to infinity, we have

(3.2) [PC]2 + 2xJUX - cost) = 0(r2).

Therefore, if majorants f(Q) are given for a sequence of radii r <—» oo,

we get, considering a fixed point P,

(3.3) «(P) g *¿~*[C + 0(l)]rr+t_1 f   Mt(Q)dSrt(Q),
J Sr

where

T((2 - ¿ + n)/2)
c =

T(-»/»r((3 - k)/2)

(For another deduction of (3.3) in the case of harmonic functions in

the plane see L. Bieberbach [2, pp. 132-134].) We define2

m(r)
(3.4) a — lim inf-•

r-»oo      r1— *

There exists a sequence r—>oo such that (a-r-e,)rj-t is a majorant of

m on 5ri, where e,—>0 if i—>oo. (In the case a= — oo we have to re-

place (a+ti) by Si, ôi—r—œ.) If we apply (3.3) to the sequence

{STi} while considering a fixed point PÇzH, we obtain in the limit

i-»     r
(3.5) u(P) ^ xn   aC I   sin «^áS = «i*,

•'s

2r((2 - k + n)/2)

i-k

where

ai = a
(„ _ i)r((„ - i)/2)r((3 - k)/2)

(In the case of harmonic functions in the plane we have ai = 4a/7r, a

relation due to R. Nevanlinna [8, p. 43].)

By means of (3.5) the cases a = 0 and a = — oo can be easily treated.

From now on we require a to be finite and different from zero.

It can be verified by computation that

C f sin2-* <¡>dS - 1.(3.6) C f
J s

' The trivial case a = + «c shall be omitted in the sequel.
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Therefore, since

C I   sin <bdS > C I   sin2-* <¡>dS - 1,
J 8 J S

we infer from (3.5) that

(3.7) ax ^ a fora^O.

On the half-sphere 5r<1 u is majorized by the two functions (a+e,)rj_l

and «i(rf sin <£)l_*. Putting either of them into (3.3), we would obtain

(3.5) again. But we can improve (3.5) by combining the two major-

ants:

We define hx(Q*) =mm [ax sin1-* <b, a]. Clearly u is majorized on

Sr< by (hx(Q*) +et)r\-*. Hence (3.3) yields in the limit

u(P) ^ a2xn   , where at = C I   hx
J s

sin <¡>dS.

We can repeat this argument and obtain the following iteration:

If we define

(3.8) h,(Q*) = min [«„ sin1-* *, a] (M = 1, 2, 3, • • • )

and

(3.9) a„ = C I   A„_i sin tf>d5 fr» = 2, 3, 4, • • • ),
•'S

we will have

(3.10) u(P)^aßx\~k f>- 1,2,3,-..).

From (3.6), (3.8), and (3.9) we infer

(3.11) a„+i = C l  hß sin tf><¿5 < Ca„ |   sin2"* <pdS = a„,
•/ s J s

i.e. the sequence [a„} decreases monotonously. We have

(3.12) aM g a for a > 0,

because aß<a and (3.10) would lead to a contradiction with (3.4).

We shall now prove the relations (p tending to infinity)

(3.13) a„ \ a for a > 0

and

(3.14) a, \ - oo for a < 0.
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The proof of (a), (b), and (c) will thus be achieved, because these

statements are immediate consequences from (3.10), (3.13), and

(3.14).
Proof of (3.13). If (3.13) were not true, we could conclude from

(3.11) and (3.12) that «„NY, where y>a. Using (3.6), (3.8), and (3.9)
we would get

a„ — aM+i = C |    (a„ sin1-* <j> — h„) sin <bdS
J s

= C I    (aM sin1-* <b — a) sin <bdS
J s"

> C I    (y sin1"* <b - a) sin <pdS > 0,

where

S" = E[Q* | a„ sin1-* <f>> a]    and   S? = E[Q* | y sin1-* <p > a].

But since the last integral is independent of p, we thus get a contradic-

tion to the convergence of {a„}.

Proof of (3.14). If (3.14) were not true, we could conclude from

(3.7) and (3.11) that {a„} converges; more exactly, that aM\ô

where — oo <d<a. Making use of (3.6), (3.8), and (3.9) we would

obtain

= C f   (a,
J s"

a„ — a„+i = C I     (aß sin1-* <p — h») sin <bdS
J s

sin1-* d> — a) sin <bdS

> C j    (5 sin1"* <b - a) sin <bdS > 0,
J s»

where

S" = £[ö*|aMsin1-*<il» > a]    and   5a = Efo* | 5 sin1-* <p > a].

But since the last integral is independent of p, we have a contradic-

tion to the convergence of {a?}. Because of the maximum principle

the function axl'* — u(P) cannot attain its maximum 0 in an interior

point of H, unless it vanishes identically. This proves (d).

4. Final remarks. The theorem may also be applied to functions

which possess continuous second derivatives and satisfy the dif-
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ferential inequality L*[m]^0 (k<l). More generally, it is true for

a set of functions which for k = 0 coincides with the class of sub-

harmonic functions and which can be defined in analogous ways.

The theorem remains valid if 77 is replaced by any infinite sub-

region.
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