
A DERIVATIVE TEST FOR FINITE SOLUTIONS OF GAMES

I. GLICKSBERG

For a continuous real-valued function M (called the payoff1) on

the unit square, the minimax theorem of game theory states that

there is a unique constant v (the value) and probability distributions

/, g over [0, 1 ] (called maximizing and minimizing optimal strategies,

respectively) for which

(1) f   M(x, y)df(x) ètèf   M{x, y)dg(y).
Jo Jo

At present there is no general method for finding these optimal

strategies (which need not be unique), and, consequently, results

which reduce the set of distributions among which one need search

are desirable. Recently Samuel Karlin [3] has introduced a class of

payoff functions M, related to convex payoff functions [l], for which

optimal strategies with at most a finite number of points of increase

always exist. The purpose of this note is to give a proof for all n of the

theorem concerning these functions which Karlin proved for w^4:

Theorem. // dnM/dyn is continuous and is of one sign, then there is

a maximizing optimal strategy with at most n points of increase and a

minimizing optimal strategy with at most n/2 points of increase (count-

ing, in this case, 0 and 1 as half points).

Proof. As is shown in [3], we need only consider the case in which

the partial never vanishes, and clearly we may take v = 0. Let/o be a

fixed maximizing optimal strategy. From (1) it is apparent that any

optimal g places weight at only the minima of k(y) =f0lM(x, y)df0(x) ;

since kM(y) = fo(dnM/dyn)dfo(x) ^0, a simple argument based on

Rolle's Theorem shows there are at most n/2 minimum points, count-

ing 0 and 1 as half points, and the second assertion of the theorem

follows. Furthermore, since A(n)(y)^0, it follows from Rolle's Theo-

rem that the total number of roots of k, counting multiplicities, is at

most n.

To establish the first assertion of the theorem we shall construct

an auxiliary polynomial-like payoff function [2], the construction

being based on this last observation. We first assert that there is a
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1 For game-theoretic notation and motivation the reader is referred to [4, preface]

and [5].
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polynomial p0 of degree less than n for which, on [0, l], k^po^O

and k—po has exactly n roots counting multiplicities. For consider

the nonvoid set of polynomials p of degree less than « for which

k^pçîO. Counting multiplicities, the number of roots of k — p is at

most n (since k{n) — pM = k{n) ¿¿0) for these polynomials, so let po

be one for which the number of roots is maximum. If k—po has

roots y¡ of multiplicity mit i=l, • ■ • , r, and ^ot<<m, then, since

the roots y i interior to [0, 1 ] are of even multiplicity, there is a poly-

nomial ¿>i ̂ 0 (on [O, 1 ]) of degree less than n having just these roots

and multiplicities. Consequently we may define the continuous func-

tion (k—po)/px by setting

((* - Po)/PÙ(y<) = (komi\yù - pT^yïï/pT^yù

and clearly X = minv ((k— po)/pi)(y)>0. But then k^po+\px

3ï0, and, since k — po—\pi can thus have at most ^T,mt roots,

counting multiplicities, we must have k<-mi)iyi) — p^iyi)— A^T^OO

>0 and kiy)—poiy)—\pxiy)>0 for y^yit i=l, ■ ■ ■ ,r, so that

Hk — po)/px)iy)>\ = mm ik — pQ)/px, a contradiction. Thus we must

have ^,m, = n, so that po is the desired polynomial.

Now it is easily seen that for each fixed x one may find coefficients

ajix), j = 0, ■ ■ ■ , n-l, for which ayx(y) = Mix, y)~ Y.l-l aÁx)yi
has the roots y,- of multiplicity m,-. Moreover, this polynomial in y

is unique,2 so that, since we may write n linear equations for the

unknowns a0ix), ■ • • ,an-Xix), the matrix of coefficients in these equa-

tions is nonsingular, and the a¡ are seen to be continuous functions.

For any x, <bx has a nonvanishing nth derivative, so that its only

roots are the y i (of multiplicity m,). Since those interior to [0, l] are

of even multiplicity, <bx is of one sign and not identically zero—thus

by continuity either

n-l

(2) Mix, y) - £ a¿x)yi è 0 for all x, y
j-0

or

n-l

(3) Mix, y) - X ajix)y' g 0 for all x, y.

But integration of this expression with respect to /0 yields k{y)

~ S"-o ifo<íjix)dfoix))yi, and since this function of y has roots y¿

1 The difference of two such polynomials, of degree less than n, has n roots,

hence = 0.
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of multiplicity wz< (since this was true for each d>x), we must have

po(y) — Hj-o (foas(x)dfo(x))y' = 0, as a polynomial of degree less than

n with n roots. Since k(y)>p0(y) for some y, (2) must hold.

Now if go is any minimizing optimal strategy, we have

f   H a¡(x)yidgo(y) Ú f   Mix, y)dg0(y) g0| Poiy)
Jo Jo

H aj(x)yjdfo(x)
J 0

so that the payoff function H"-oaÂx)y' has value v = 0 (cf. (1)). In

view of its polynomial-like character [2] it has a maximizing optimal

strategy / with at most n points of increase, so that

f   M (x, y)df(x) èf   E aj(x)y'df(x) *t 0,
J o Jo

and / is a maximizing optimal strategy for M, which completes the

proof.

A second theorem of Karlin now appears as a

Corollary. // dnM/dy" is of one sign and never zero, and there is a

k-dimensional set of minimizing optimal strategies, then there is a

maximizing optimal strategy with at most n — k points of increase.

For since M (x, y) ^ Haiix)yi and both functions are payoffs with

value v = Q, if g is a minimizing optimal strategy for M, then 0

^foHai(x)y'dg(y), i.e., g is a minimizing optimal strategy for

Hai(x)y'~~~thus this polynomial-like function has a ¿-dimensional

set of minimizing optimal strategies, and, in view of the results of [2],

has a maximizing optimal strategy with at most n — k points of in-

crease which, as before, is optimal for M.
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